490 research outputs found

    Two dimensional switched beam antenna at 28 GHz for fifth generation wireless system

    Get PDF
    Fifth generation (5G) wireless system is expected to enable new device-to-device (D2D) and machine-to-machine (M2M) applications that will impact both consumers and industry. Moreover, for efficient M2M communication, both one dimensional (1-D) and two dimensional (2-D) beam switching is highly needed for high data-rate wireless radio links. A planar array with 2-D beam switching capabilities is highly desirable in 5G system. This thesis proposes a new technique of achieving simple and cost effective 2-D beam switching array antenna at 28 GHz for 5G wireless system. The technique involves lateral cascading of Butler matrix (BM) beamforming network (BFN). However, designing a planar BM at 28 GHz that will allow K-connector is not a trivial issue because the distances between the ports are X/4 electrical length apart. Nevertheless, two branch line coupler (BLC) with unequal ports separation at 28 GHz on a single substrate are designed and applied to design 1-D switched beam antennas based on BLC and 4 * 4 BM. Then two of these antennas are laterally cascaded to achieve 2-D beam switching antenna. This novel concept is the basis for choosing BM BFN in the design. The proposed 1-D array antennas on BLC and BM have wide measured impedance bandwidth of 18.9% (5.3 GHz) and 21.7% (6.1 GHz) and highest gain of 14.6 dBi and 15.9 dBi, respectively. The 2-D switched beam antenna on cascaded BLC has highest realized gain of 14.9 dB, radiation efficiency of 86%, 86.8%, 85.5%, and 83.4% at ports 1 to 4, respectively. The switching range of from -25o to +18° in the x-z plane and from -18o to 24o in the y-z plane, while the 2-D switched beam antenna based on cascaded 4 * 4 BM has switching range of -41o to 43o in the x-z plane and -43o to 42o in the y-z plane with highest realized gain of 14.4 dBi. The proposed antennas have great potentials for 5G wireless communication system applications

    Dual-band Butler matrix for WLAN systems

    Get PDF
    This paper shows the design of a dual-band Butler matrix aimed to cover the bands corresponding to the standards IEEE802.11a/b, with particular interest in WLAN systems, at the 2.4 GHz and 5 GHz bands. Measurements of the individual dual-band components which compose the Butler matrix are presented. Those components are: quadrature hybrid and 0 dB coupler. The phase shifter design is also described. A final design of the Butler matrix is proposed and measured. Over the proposed frequency range, the Butler matrix exhibits phase errors and couplings of within 13.5/spl deg/ and - 6.7 /spl plusmn/ 0.8 dB, respectively. A performance prediction of the Butler matrix connected to an array of isotropic and perfectly matched antennas separated half-wavelength in air is also briefly commentedPeer Reviewe

    Design and Analysis of Wideband Nonuniform Branch Line Coupler and Its Application in a Wideband Butler Matrix

    Get PDF
    This paper presents a novel wideband nonuniform branch line coupler. An exponential impedance taper is inserted, at the series arms of the branch line coupler, to enhance the bandwidth. The behavior of the nonuniform coupler was mathematically analyzed, and its design of scattering matrix was derived. For a return loss better than 10 dB, it achieved 61.1% bandwidth centered at 9 GHz. Measured coupling magnitudes and phase exhibit good dispersive characteristic. For the 1 dB magnitude difference and phase error within 3∘, it achieved 22.2% bandwidth centered at 9 GHz. Furthermore, the novel branch line coupler was implemented for a wideband crossover. Crossover was constructed by cascading two wideband nonuniform branch line couplers. These components were employed to design a wideband Butler Matrix working at 9.4 GHz. The measurement results show that the reflection coefficient between the output ports is better than 18 dB across 8.0 GHz–9.6 GHz, and the overall phase error is less than 7∘

    Design and Fabrication of the Novel Miniaturized Microstrip Coupler 3dB Using Stepped Impedance Resonators for the ISM Applications

    Get PDF
    In this work, a novel miniaturized compact coupler using the shunt-stubs artificial transimission lines with high and low impedances is presented. Design of the proposed coupler is accomplished by modifying the length and impedance of the branch lines in the conventional structure with the planar resonators in order to achieve branch line coupler with compact size and improvement of the performances. First part of this work is focusing on the theorical study of the proposed resonators where the equations are obtained. Secondly, the proposed coupler is designed on FR4 susbtrate, and simulated by using the EM Solver (ADS from Agilent technologies and CST microwave studio) in order to operate in the ISM band. The obtained results show good agreement with the simulations and the coupler shows a good perfo6rmance in the hole bandwidth. The size of the proposed coupler is reduced around 50% compared to the conventional design. The last part conerns the fabrication and test of the proposed coupler. The measurement and simulation results are in good agreements

    Antenna Array Designs For Directional Wireless Communicatoin

    Get PDF
    Ph.D. Thesis. University of Hawaiʻi at Mānoa 2018

    Dynamic Capacity Enhancement using a Smart Antenna in Mobile Telecommunications Networks

    Get PDF
    This work describes an investigation into the performance of antennas for mobile base station applications and techniques for improving the coverage and capacity within a base station cell. The work starts by tracing the development of mobile systems, both in technical and commercial terms, from the earliest analogue systems to present day broadband systems and includes anticipated future developments. This is followed by an outline of how smart antenna systems can be utilised to improve cell coverage and capacity. A novel smart antenna system incorporating an array of slant ± 450 dual- polarised stacked patch elements four columns wide excited by a novel multi-beam forming and beam shaping network has been designed, simulated and implemented. It is found that for an ideal smart antenna array, four narrow overlapping beams, one wide “broadcast channel” beam and right and left shaped beams can be provided. Results are presented for the simulation of the smart antenna system using CST EM simulation software which inherently includes mutual coupling and the effects of a truncated ground plane on the element patterns. The results show some significant changes to the desired set of coverage patterns and various mutual coupling compensation techniques have been reviewed. An improved design technique has been developed for compensating the performance degrading effects of mutual coupling and finite ground plane dimensions in microstrip antenna arrays. The improved technique utilises combination of two previously known techniques: complex excitation weights compensation by inversion of the array mutual coupling scattering matrix and the incorporation of a WAIM (wide angle impedance matching) sheet. The technique has been applied to a novel multi-beam smart antenna array to demonstrate the efficacy of the technique by electromagnetic simulation. In addition, a demonstrator array has been constructed and tested which has yielded a positive conformation of the simulation results. For the developed demonstrator array which provides seven different beams, beams “footprints” have been predicted both for free space propagation and for urban propagation to evaluate the dynamic capacity performance of the smart antenna in a 3G mobile network. The results indicate that sector capacity can be dynamically tailored to user demand profiles by selection of the appropriate beam patterns provided by the novel smart antenna system

    Dual-band planar quadrature hybrid with enhanced bandwidth response

    Get PDF
    This paper presents the theory, design procedure, and implementation of a dual-band planar quadrature hybrid with enhanced bandwidth. The topology of the circuit is a three-branch-line (3-BL) quadrature hybrid, which provides much larger flexibility to allocate the desired operating frequencies and necessary bandwidths than other previously published configurations. A performance comparison with other dual-band planar topologies is presented. Finally, a 3-BL quadrature hybrid for dual band (2.4 and 5 GHz) wireless local area network systems was fabricated, aimed to cover the bands corresponding to the standards IEEE802.11a/b. The measurements show a 16% and 18% bandwidth for the lower and upper frequency, respectively, satisfying and exceeding the bandwidth requirements for the above standards.Peer Reviewe

    A Recent Approach towards Fluidic Microstrip Devices and Gas Sensors: A Review

    Get PDF
    This paper aims to review some of the available tunable devices with emphasis on the techniques employed, fabrications, merits, and demerits of each technique. In the era of fluidic microstrip communication devices, versatility and stability have become key features of microfluidic devices. These fluidic devices allow advanced fabrication techniques such as 3D printing, spraying, or injecting the conductive fluid on the flexible/rigid substrate. Fluidic techniques are used either in the form of loading components, switching, or as the radiating/conducting path of a microwave component such as liquid metals. The major benefits and drawbacks of each technology are also emphasized. In this review, there is a brief discussion of the most widely used microfluidic materials, their novel fabrication/patterning methods
    • 

    corecore