680 research outputs found

    Crowdsourced Live Streaming over the Cloud

    Full text link
    Empowered by today's rich tools for media generation and distribution, and the convenient Internet access, crowdsourced streaming generalizes the single-source streaming paradigm by including massive contributors for a video channel. It calls a joint optimization along the path from crowdsourcers, through streaming servers, to the end-users to minimize the overall latency. The dynamics of the video sources, together with the globalized request demands and the high computation demand from each sourcer, make crowdsourced live streaming challenging even with powerful support from modern cloud computing. In this paper, we present a generic framework that facilitates a cost-effective cloud service for crowdsourced live streaming. Through adaptively leasing, the cloud servers can be provisioned in a fine granularity to accommodate geo-distributed video crowdsourcers. We present an optimal solution to deal with service migration among cloud instances of diverse lease prices. It also addresses the location impact to the streaming quality. To understand the performance of the proposed strategies in the realworld, we have built a prototype system running over the planetlab and the Amazon/Microsoft Cloud. Our extensive experiments demonstrate that the effectiveness of our solution in terms of deployment cost and streaming quality

    RL-OPRA: Reinforcement Learning for Online and Proactive Resource Allocation of crowdsourced live videos

    Get PDF
    © 2020 Elsevier B.V. With the advancement of rich media generating devices, the proliferation of live Content Providers (CP), and the availability of convenient internet access, crowdsourced live streaming services have witnessed unexpected growth. To ensure a better Quality of Experience (QoE), higher availability, and lower costs, large live streaming CPs are migrating their services to geo-distributed cloud infrastructure. However, because of the dynamics of live broadcasting and the wide geo-distribution of viewers and broadcasters, it is still challenging to satisfy all requests with reasonable resources. To overcome this challenge, we introduce in this paper a prediction driven approach that estimates the potential number of viewers near different cloud sites at the instant of broadcasting. This online and instant prediction of distributed popularity distinguishes our work from previous efforts that provision constant resources or alter their allocation as the popularity of the content changes. Based on the derived predictions, we formulate an Integer-Linear Program (ILP) to proactively and dynamically choose the right data center to allocate exact resources and serve potential viewers, while minimizing the perceived delays. As the optimization is not adequate for online serving, we propose a real-time approach based on Reinforcement Learning (RL), namely RL-OPRA, which adaptively learns to optimize the allocation and serving decisions by interacting with the network environment. Extensive simulation and comparison with the ILP have shown that our RL-based approach is able to present optimal results compared to heuristic-based approaches.This work was supported by the Qatar Foundation

    Joint Transcoding Task Assignment and Association Control for Fog-assisted Crowdsourced Live Streaming

    Get PDF
    The rapid development of content delivery networks and cloud computing has facilitated crowdsourced live-streaming platforms (CLSP) that enable people to broadcast live videos which can be watched online by a growing number of viewers. However, in order to ensure reliable viewer experience, it is important that the viewers should be provided with multiple standard video versions. To achieve this, we propose a joint fog-assisted transcoding and viewer association technique which can outsource the transcoding load to a fog device pool and determine the fog device with which each viewer will be associated, to watch desired videos. The resulting non-convex integer programming has been solved using a computationally attractive complementary geometric programming (CGP). The performance of the proposed algorithm closely matches that of the globally optimum solution obtained by an exhaustive search. Furthermore, the trace-driven simulations demonstrate that our proposed algorithm is able to provide adaptive bit rate (ABR) services

    Exploring the Emerging Domain of Research on Video Game Live Streaming in Web of Science: State of the Art, Changes and Trends

    Get PDF
    In recent years, interest in video game live streaming services has increased as a new communication instrument, social network, source of leisure, and entertainment platform for millions of users. The rise in this type of service has been accompanied by an increase in research on these platforms. As an emerging domain of research focused on this novel phenomenon takes shape, it is necessary to delve into its nature and antecedents. The main objective of this research is to provide a comprehensive reference that allows future analyses to be addressed with greater rigor and theoretical depth. In this work, we developed a meta-review of the literature supported by a bibliometric performance and network analysis (BPNA). We used the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) protocol to obtain a representative sample of 111 published documents since 2012 and indexed in the Web of Science. Additionally, we exposed the main research topics developed to date, which allowed us to detect future research challenges and trends. The findings revealed four specializations or subdomains: studies focused on the transmitter or streamer; the receiver or the audience; the channel or platform; and the transmission process. These four specializations add to the accumulated knowledge through the development of six core themes that emerge: motivations, behaviors, monetization of activities, quality of experience, use of social networks and media, and gender issues

    Crowdsourced multi-view live video streaming using cloud computing

    Get PDF
    Advances and commoditization of media generation devices enable capturing and sharing of any special event by multiple attendees. We propose a novel system to collect individual video streams (views) captured for the same event by multiple attendees, and combine them into multi-view videos, where viewers can watch the event from various angles, taking crowdsourced media streaming to a new immersive level. The proposed system is called Cloud-based Multi-View Crowdsourced Streaming (CMVCS), and it delivers multiple views of an event to viewers at the best possible video representation based on each viewer's available bandwidth. The CMVCS is a complex system having many research challenges. In this paper, we focus on resource allocation of the CMVCS system. The objective of the study is to maximize the overall viewer satisfaction by allocating available resources to transcode views in an optimal set of representations, subject to computational and bandwidth constraints. We choose the video representation set to maximize QoE using Mixed Integer Programming. Moreover, we propose a Fairness-Based Representation Selection (FBRS) heuristic algorithm to solve the resource allocation problem efficiently. We compare our results with optimal and Top-N strategies. The simulation results demonstrate that FBRS generates near optimal results and outperforms the state-of-the-art Top-N policy, which is used by a large-scale system (Twitch).This work was supported by NPRP through the Qatar National Research Fund (a member of Qatar Foundation) under Grant 8-519-1-108.Scopu

    Spatial and Temporal Learning in Robotic Pick-and-Place Domains via Demonstrations and Observations

    Get PDF
    Traditional methods for Learning from Demonstration require users to train the robot through the entire process, or to provide feedback throughout a given task. These previous methods have proved to be successful in a selection of robotic domains; however, many are limited by the ability of the user to effectively demonstrate the task. In many cases, noisy demonstrations or a failure to understand the underlying model prevent these methods from working with a wider range of non-expert users. My insight is that in many mobile pick-and-place domains, teaching is done at a too fine grained level. In many such tasks, users are solely concerned with the end goal. This implies that the complexity and time associated with training and teaching robots through the entirety of the task is unnecessary. The robotic agent needs to know (1) a probable search location to retrieve the task\u27s objects and (2) how to arrange the items to complete the task. This thesis work develops new techniques for obtaining such data from high-level spatial and temporal observations and demonstrations which can later be applied in new, unseen environments. This thesis makes the following contributions: (1) This work is built on a crowd robotics platform and, as such, we contribute the development of efficient data streaming techniques to further these capabilities. By doing so, users can more easily interact with robots on a number of platforms. (2) The presentation of new algorithms that can learn pick-and-place tasks from a large corpus of goal templates. My work contributes algorithms that produce a metric which ranks the appropriate frame of reference for each item based solely on spatial demonstrations. (3) An algorithm which can enhance the above templates with ordering constraints using coarse and noisy temporal information. Such a method eliminates the need for a user to explicitly specify such constraints and searches for an optimal ordering and placement of items. (4) A novel algorithm which is able to learn probable search locations of objects based solely on sparsely made temporal observations. For this, we introduce persistence models of objects customized to a user\u27s environment

    Appropriating Play: Examining Twitch.tv as a Commercial Platform

    Get PDF
    This thesis critically analyzes Twitch.tv, a gaming-oriented, online live-streaming site. Viewing the site as a ‘lean platform’ (Srnicek, 2017), it analyzes many aspects of Twitch’s business operations, including ownership structure, video game industry affiliations, use of data, and the monetization of user activity. This analysis then identifies three major areas of concern arising from these operations: the tendency toward monopolization in the gaming industry and its peripheral activities; the intensification of audience commodification; and, the tendency to turn professional streamers into precarious creative labourers. All of these implications point to a growing need for concerted labour organization. The goal of this thesis is to address gaps in the existing literature about Twitch and to provide a foundation for future critical inquiries into the site

    Crowdcloud: A Crowdsourced System for Cloud Infrastructure

    Get PDF
    The widespread adoption of truly portable, smart devices and Do-It-Yourself computing platforms by the general public has enabled the rise of new network and system paradigms. This abundance of wellconnected, well-equipped, affordable devices, when combined with crowdsourcing methods, enables the development of systems with the aid of the crowd. In this work, we introduce the paradigm of Crowdsourced Systems, systems whose constituent infrastructure, or a significant part of it, is pooled from the general public by following crowdsourcing methodologies. We discuss the particular distinctive characteristics they carry and also provide their “canonical” architecture. We exemplify the paradigm by also introducing Crowdcloud, a crowdsourced cloud infrastructure where crowd members can act both as cloud service providers and cloud service clients. We discuss its characteristic properties and also provide its functional architecture. The concepts introduced in this work underpin recent advances in the areas of mobile edge/fog computing and co-designed/cocreated systems

    Quality of experience and access network traffic management of HTTP adaptive video streaming

    Get PDF
    The thesis focuses on Quality of Experience (QoE) of HTTP adaptive video streaming (HAS) and traffic management in access networks to improve the QoE of HAS. First, the QoE impact of adaptation parameters and time on layer was investigated with subjective crowdsourcing studies. The results were used to compute a QoE-optimal adaptation strategy for given video and network conditions. This allows video service providers to develop and benchmark improved adaptation logics for HAS. Furthermore, the thesis investigated concepts to monitor video QoE on application and network layer, which can be used by network providers in the QoE-aware traffic management cycle. Moreover, an analytic and simulative performance evaluation of QoE-aware traffic management on a bottleneck link was conducted. Finally, the thesis investigated socially-aware traffic management for HAS via Wi-Fi offloading of mobile HAS flows. A model for the distribution of public Wi-Fi hotspots and a platform for socially-aware traffic management on private home routers was presented. A simulative performance evaluation investigated the impact of Wi-Fi offloading on the QoE and energy consumption of mobile HAS.Die Doktorarbeit beschäftigt sich mit Quality of Experience (QoE) – der subjektiv empfundenen Dienstgüte – von adaptivem HTTP Videostreaming (HAS) und mit Verkehrsmanagement, das in Zugangsnetzwerken eingesetzt werden kann, um die QoE des adaptiven Videostreamings zu verbessern. Zuerst wurde der Einfluss von Adaptionsparameters und der Zeit pro Qualitätsstufe auf die QoE von adaptivem Videostreaming mittels subjektiver Crowdsourcingstudien untersucht. Die Ergebnisse wurden benutzt, um die QoE-optimale Adaptionsstrategie für gegebene Videos und Netzwerkbedingungen zu berechnen. Dies ermöglicht Dienstanbietern von Videostreaming verbesserte Adaptionsstrategien für adaptives Videostreaming zu entwerfen und zu benchmarken. Weiterhin untersuchte die Arbeit Konzepte zum Überwachen von QoE von Videostreaming in der Applikation und im Netzwerk, die von Netzwerkbetreibern im Kreislauf des QoE-bewussten Verkehrsmanagements eingesetzt werden können. Außerdem wurde eine analytische und simulative Leistungsbewertung von QoE-bewusstem Verkehrsmanagement auf einer Engpassverbindung durchgeführt. Schließlich untersuchte diese Arbeit sozialbewusstes Verkehrsmanagement für adaptives Videostreaming mittels WLAN Offloading, also dem Auslagern von mobilen Videoflüssen über WLAN Netzwerke. Es wurde ein Modell für die Verteilung von öffentlichen WLAN Zugangspunkte und eine Plattform für sozialbewusstes Verkehrsmanagement auf privaten, häuslichen WLAN Routern vorgestellt. Abschließend untersuchte eine simulative Leistungsbewertung den Einfluss von WLAN Offloading auf die QoE und den Energieverbrauch von mobilem adaptivem Videostreaming
    corecore