3,928 research outputs found

    HH_\infty optimization of multiple tuned mass dampers for multimodal vibration control

    Full text link
    In this paper, a new computational method for the purpose of multimodal vibration mitigation using multiple tuned mass dampers is proposed. Classically, the minimization of the maximum amplitude is carried out using direct HH_\infty optimization. However, as shall be shown in the paper, this approach is prone to being trapped in local minima, in view of the nonsmooth character of the problem at hand. This is why this paper presents an original alternative to this approach through norm-homotopy optimization. This approach, combined with an efficient technique to compute the structural response, is shown to outperform direct HH_\infty optimization in terms of speed and performance. Essentially, the outcome of the algorithm leads to the concept of all-equal-peak design for which all the controlled peaks are equal in amplitude. This unique design is new with respect to the existing body of knowledge.Comment: This is a new version of a preprint previously named "All-equal-peak design of multiple tuned mass dampers using norm-homotopy optimization

    Stabilization of acoustic modes using Helmholtz and Quarter-Wave resonators tuned at exceptional points

    Full text link
    Acoustic dampers are efficient and cost-effective means for suppressing thermoacoustic instabilities in combustion chambers. However, their design and the choice of their purging air mass flow is a challenging task, when one aims at ensuring thermoacoustic stability after their implementation. In the present experimental and theoretical study, Helmholtz (HH) and Quarter-Wave (QW) dampers are considered. A model for their acoustic impedance is derived and experimentally validated. In a second part, a thermoacoustic instability is mimicked by an electro-acoustic feedback loop in a rectangular cavity, to which the dampers are added. The length of the dampers can be adjusted, so that the system can be studied for tuned and detuned conditions. The stability of the coupled system is investigated experimentally and then analytically, which shows that for tuned dampers, the best stabilization is achieved at the exceptional point. The stabilization capabilities of HH and QW dampers are compared for given damper volume and purge mass flow.Comment: 34 pages, 19 figures, acepted in the Journal of Sound and Vibratio

    Vibration suppression in multi-body systems by means of disturbance filter design methods

    Get PDF
    This paper addresses the problem of interaction in mechanical multi-body systems and shows that subsystem interaction can be considerably minimized while increasing performance if an efficient disturbance model is used. In order to illustrate the advantage of the proposed intelligent disturbance filter, two linear model based techniques are considered: IMC and the model based predictive (MPC) approach. As an illustrative example, multivariable mass-spring-damper and quarter car systems are presented. An adaptation mechanism is introduced to account for linear parameter varying LPV conditions. In this paper we show that, even if the IMC control strategy was not designed for MIMO systems, if a proper filter is used, IMC can successfully deal with disturbance rejection in a multivariable system, and the results obtained are comparable with those obtained by a MIMO predictive control approach. The results suggest that both methods perform equally well, with similar numerical complexity and implementation effort

    Application of Tuned Mass Dampers for Structural Vibration Control: A State-of-the-art Review

    Get PDF
    Given the burgeoning demand for construction of structures and high-rise buildings, controlling the structural vibrations under earthquake and other external dynamic forces seems more important than ever. Vibration control devices can be classified into passive, active and hybrid control systems. The technologies commonly adopted to control vibration, reduce damage, and generally improve the structural performance, include, but not limited to, damping, vibration isolation, control of excitation forces, vibration absorber. Tuned Mass Dampers (TMDs) have become a popular tool for protecting structures from unpredictable vibrations because of their relatively simple principles, their relatively easy performance optimization as shown in numerous recent successful applications. This paper presents a critical review of active, passive, semi-active and hybrid control systems of TMD used for preserving structures against forces induced by earthquake or wind, and provides a comparison of their efficiency, and comparative advantages and disadvantages. Despite the importance and recent advancement in this field, previous review studies have only focused on either passive or active TMDs. Hence this review covers the theoretical background of all types of TMDs and discusses the structural, analytical, practical differences and the economic aspects of their application in structural control. Moreover, this study identifies and highlights a range of knowledge gaps in the existing studies within this area of research. Among these research gaps, we identified that the current practices in determining the principle natural frequency of TMDs needs improvement. Furthermore, there is an increasing need for more complex methods of analysis for both TMD and structures that consider their nonlinear behavior as this can significantly improve the prediction of structural response and in turn, the optimization of TMDs

    Invited Review: Recent developments in vibration control of building and bridge structures

    Get PDF
    This paper presents a state-of-the-art review of recent articles published on active, passive, semi-active and hybrid vibration control systems for structures under dynamic loadings primarily since 2013. Active control systems include active mass dampers, active tuned mass dampers, distributed mass dampers, and active tendon control. Passive systems include tuned mass dampers (TMD), particle TMD, tuned liquid particle damper, tuned liquid column damper (TLCD), eddy-current TMD, tuned mass generator, tuned-inerter dampers, magnetic negative stiffness device, resetting passive stiffness damper, re-entering shape memory alloy damper, viscous wall dampers, viscoelastic dampers, and friction dampers. Semi-active systems include tuned liquid damper with floating roof, resettable variable stiffness TMD, variable friction dampers, semi-active TMD, magnetorheological dampers, leverage-type stiffness controllable mass damper, semi-active friction tendon. Hybrid systems include shape memory alloys-liquid column damper, shape memory alloy-based damper, and TMD-high damping rubber

    Advanced computational design of shared tuned mass-inerter dampers for vibration control of adjacent multi-story structures

    Get PDF
    Inerters are a novel type of mechanical actuation devices that are able to produce large inertial forces with a relatively small mass. Due to this property, inerters can provide an effective solution to the main drawbacks of tuned mass-dampers and, consequently, they are gaining an increasing relevance in the field of passive structural vibration control. In this paper, a computational design strategy for inerter-based vibration control schemes is presented. The proposed approach combines a computationally effective reduced-frequency H8 cost-function and a constrained global optimization solver to design different configurations of a shared tuned mass-inerter-damper system for the seismic protection of a multi-story two-building structure. To assess the effectiveness of the obtained configurations, the frequency characteristics and the seismic response of the interstory drifts and interbuilding approaches are investigated with positive results.Peer ReviewedPostprint (published version

    Oscillator Dampers in Civil Structures

    Get PDF
    Many kinds of oscillators, springs, and damping system compose vibration reduction system in civil structures. Since the invention of the tuned mass damper (TMD) device a century ago, it has become a very important technology in structural control. TMDs can effectively suppress the response of civil structures under harmonic or wind excitations. To improve the damping capacity of TMDs in reducing the vibration of structures under seismic loads, a large mass ratio should be used, but TMDs are still ineffective in suppressing the seismic peak response of high-rise buildings. The inerter-based dynamic vibration absorbers (IDVA), including tuned inerter dampers (TID) and tuned mass-damper-inerter (TMDI), have been investigated in recent years. The advantage of using a TID and TMDI comes from the adoption of gearing in the inerter, which equivalently amplifies the mass. The mass ratio of an inerter is very high; hence, its mechanical properties and reliability are vital. A novel damper device, accelerated oscillator damper (AOD), has been proposed recently. Gear transmission systems are used to generate an amplified kinetic energy of the oscillator to reduce the oscillations of the structures. The AOD system is superior to the traditional TMD system in short time loading intervals or under the maximum seismic loads
    corecore