24 research outputs found

    Computer-Generated Phase-Only Holograms for Real-Time Image Display

    Get PDF

    Design of LCOS microdisplay backplanes for projection applications

    Get PDF
    De evolutie van licht emitterende diodes (LED) heeft ervoor gezorgd dat het op dit moment interessant wordt om deze componenten als lichtbron te gebruiken in projectiesystemen. LEDโ€™s hebben belangrijke voordelen vergeleken met klassieke booglampen. Ze zijn compact, ze hebben een veel grotere levensduur en ogenblikkelijke schakeltijden, ze werken op lage spanningen, etc. LEDโ€™s zijn smalbandig en kunnen een groterekleurenbereik realiseren. Ze hebben momenteel echter een beperkte helderheid. Naast de lichtbron is het type van de lichtklep ook bepalend voor de kwaliteit van een projectiesysteem. Er bestaan verschillende lichtkleptechnologieรซn waaronder die van de reflectieve LCOS-panelen. Deze lichtkleppen kunnen zeer hoge resoluties hebben en wordenvaak gebruikt in kwalitatieve, professionele projectiesystemen. LEDโ€™s zijn echter totaal verschillend van booglampen. Ze hebben een andere vorm, package, stralingspatroon, aansturing, fysische en thermische eigenschappen, etc. Hoewel er een twintigtal optische architecturen bekend zijn voor reflectieve beeldschermen (met een booglamp als lichtbron), zijn ze niet geschikt voor LED-projectoren en moeten nieuwe optische architecturen en een elektronische aansturing ontwikkeld worden. In dit doctoraat werd er hieromtrent onderzoek gedaan. Er werd uiteindelijk een driekleurenprojector (R, G, B) met een efficiรซnt LED-belichtingssysteem gebouwd met twee LCOS-lichtkleppen. Deze LEDprojector heeft superieure eigenschappen (zeer lange levensduur, beeldkwaliteit, etc.) en een matige lichtopbrengst

    Eurodisplay 2019

    Get PDF
    The collection includes abstracts of reports selected by the program by the conference committee

    A Wearable Head-mounted Projection Display

    Get PDF
    Conventional head-mounted projection displays (HMPDs) contain of a pair of miniature projection lenses, beamsplitters, and miniature displays mounted on the helmet, as well as a retro-reflective screen placed strategically in the environment. We have extened the HMPD technology integrating the screen into a fully mobile embodiment. Some initial efforts of demonstrating this technology has been captured followed by an investigation of the diffraction effects versus image degradation caused by integrating the retro-reflective screen within the HMPD. The key contribution of this research is the conception and development of a mobileHMPD (M-HMPD). We have included an extensive analysis of macro- and microscopic properties that encompass the retro-reflective screen. Furthermore, an evaluation of the overall performance of the optics will be assessed in both object space for the optical designer and visual space for the possible users of this technology. This research effort will also be focused on conceiving a mobile M-HMPD aimed for dual indoor/outdoor applications. The M-HMPD shares the known advantage such as ultralightweight optics (i.e. 8g per eye), unperceptible distortion (i.e. โ‰ค 2.5%), and lightweight headset (i.e. โ‰ค 2.5 lbs) compared with eyepiece type head-mounted displays (HMDs) of equal eye relief and field of view. In addition, the M-HMPD also presents an advantage over the preexisting HMPD in that it does not require a retro-reflective screen placed strategically in the environment. This newly developed M-HMPD has the ability to project clear images at three different locations within near- or far-field observation depths without loss of image quality. This particular M-HMPD embodiment was targeted to mixed reality, augmented reality, and wearable display applications

    ํ™€๋กœ๊ทธ๋ž˜ํ”ฝ ํ”„๋ฆฐํ„ฐ๋ฅผ ์ด์šฉํ•œ ์ฆ๊ฐ•ํ˜„์‹ค ๋””์Šคํ”Œ๋ ˆ์ด์˜ ๋งž์ถคํ˜• ํ™€๋กœ๊ทธ๋ž˜ํ”ฝ ๊ด‘ํ•™ ์†Œ์ž ์ œ์ž‘

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2020. 8. ์ด๋ณ‘ํ˜ธ.This dissertation presents the studies on the design and fabrication method of a holographic optical element (HOE) for augmented reality (AR) near-eye display (NED) by using a holographic printing technique. The studies enable us to manufacture HOEs based on the digitalized design process and allow more freedom to design HOEs, beyond the conventional HOE manufacturing process. The manufactured HOE can play the role of the image combiner of the AR NED and can be designed precisely according to each users distinctive characteristics. The prototype of the HOE printer is presented and the structure is analyzed. The HOE printer can record a hogel with 1900 ร— 1900 pixels in 1 mm2 and can give complex wavefront information via using an amplitude SLM and sideband filtering technique. The author adopts an index-matching frame with a passive optical isolator, which consists of quarter waveplates and linear polarizers, to eliminate the internal reflection noise. With the HOE printer, a lens HOE with field of view (FOV) 50ยฐ is manufactured, and a holographic AR NED is implemented with the lens HOE. The experimental result shows the lens HOE and the HOE printer work properly as our purpose. Using the prototype HOE printer, the author proposes two types of novel AR NEDs. First, the author suggests a customized HOE for an eye-box extended holographic AR NED. The limitation of the conventional holographic AR NED is that the eye-box becomes very narrow when large FOV is implemented due to the limited spatial bandwidth product. By using the proposed HOE printer, the eye-box can be extended along with both horizontal and vertical directions without any mechanical scanning devices. Also, the position of the extended eye-box can be designed to fit with the movement of the eye pupil. This prevents the vignetting effect due to the eye-box mismatch. Second, the author presents a freeform mirror array (FMA) HOE and implement a retinal projection AR NED with the HOE. By using the FMA HOE, the holographic mirrors no longer block the sight of the observer. Also, the freeform phase function allows the FMA HOE to float the display to the desired location without any additional optics, such as a lens. In this way, a wide depth of field and extended eye-box retinal projection AR NED with a compact form factor is implemented. It is expected that this dissertation can help to develop a customized AR NED based on the customers needs. Furthermore, it is believed that this work can show new possibilities for research on the design and fabrication of HOEs.๋ณธ ๋ฐ•์‚ฌํ•™์œ„ ๋…ผ๋ฌธ์—์„œ๋Š” ๊ทผ์•ˆ ์ฆ๊ฐ•ํ˜„์‹ค ๋””์Šคํ”Œ๋ ˆ์ด์˜ ํ™€๋กœ๊ทธ๋ž˜ํ”ฝ ์˜์ƒ ๊ฒฐํ•ฉ ์†Œ์ž๋ฅผ ํ™€๋กœ๊ทธ๋ž˜ํ”ฝ ํ”„๋ฆฐํŒ… ๊ธฐ์ˆ ์„ ์ด์šฉํ•˜์—ฌ ์„ค๊ณ„ ๋ฐ ์ œ์ž‘ํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•˜์—ฌ ๋…ผํ•œ๋‹ค. ์ด๋ฅผ ํ†ตํ•˜์—ฌ ๊ธฐ์กด์˜ ์•„๋‚ ๋กœ๊ทธ ๋ฐฉ๋ฒ•์— ์˜์กดํ•œ ํ™€๋กœ๊ทธ๋ž˜ํ”ฝ ๊ด‘ํ•™ ์†Œ์ž ์ œ์ž‘ ๊ธฐ๋ฒ•์„ ๋””์ง€ํ„ธํ™” ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ ํ™€๋กœ๊ทธ๋ž˜ํ”ฝ ๊ด‘ํ•™ ์†Œ์ž์˜ ์„ค๊ณ„ ์ž์œ ๋„๊ฐ€ ์ฆ๊ฐ€ํ•˜์—ฌ ์‚ฌ์šฉ์ž ํŠน์ง•์— ๋”ฐ๋ฅธ ๊ทผ์•ˆ ์ฆ๊ฐ•ํ˜„์‹ค ๋””์Šคํ”Œ๋ ˆ์ด์˜ ๋งž์ถคํ˜• ์˜์ƒ ๊ฒฐํ•ฉ ์†Œ์ž๋ฅผ ์ œ์ž‘ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด ๋ฐ•์‚ฌํ•™์œ„ ๋…ผ๋ฌธ์—์„œ๋Š” ํ™€๋กœ๊ทธ๋ž˜ํ”ฝ ๊ด‘ํ•™ ์†Œ์ž ํ”„๋ฆฐํ„ฐ์˜ ํ”„๋กœํ† ํƒ€์ž…์„ ์ œ์ž‘ ๋ฐ ์†Œ๊ฐœํ•œ๋‹ค. ํ•ด๋‹น ํ”„๋กœํ† ํƒ€์ž…์€ 1 mm2์˜ ๋ฉด์  ์•ˆ์— 1900 ร— 1900 ๋ณต์†Œ ๊ด‘ํŒŒ ์ •๋ณด๋ฅผ ํ‘œํ˜„ ํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ด‘ํŒŒ์˜ ๋ณต์†Œ ๋ณ€์กฐ๋ฅผ ์œ„ํ•˜์—ฌ ์ง„ํญ ๋ณ€์กฐ ๊ณต๊ฐ„๊ด‘๋ณ€์กฐ๋ฅผ ์ด์šฉํ•œ sideband filtering ๊ธฐ๋ฒ•์ด ์‚ฌ์šฉ๋œ๋‹ค. ๋˜ํ•œ ๊ตด์ ˆ๋ฅ ์ด ๋ณด์ƒ๋œ ํ”„๋ ˆ์ž„์— 1/4 ํŒŒ์žฅํŒ ๋ฐ ์„ ํ˜• ํŽธ๊ด‘์ž๋ฅผ ์ด์šฉํ•œ ์ˆ˜๋™ ๊ด‘๋ถ„๋ฆฌ์†Œ์ž๋ฅผ ์ ์šฉํ•˜์—ฌ ํ™€๋กœ๊ทธ๋ž˜ํ”ฝ ๊ด‘ํ•™ ์†Œ์ž๋ฅผ ๊ธฐ๋ก ํ•  ๋•Œ ๋ฐœ์ƒํ•˜๋Š” ๋‚ด๋ถ€ ๋ฐ˜์‚ฌ ๋…ธ์ด์ฆˆ๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ์ œ๊ฑฐํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด์™€ ๊ฐ™์€ ํ™€๋กœ๊ทธ๋ž˜ํ”ฝ ํ”„๋ฆฐํ„ฐ์˜ ํ”„๋กœํ† ํƒ€์ž…์ด ์˜๋„ํ•œ ๋Œ€๋กœ ์ œ์ž‘๋˜์—ˆ์Œ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ํ™€๋กœ๊ทธ๋ž˜ํ”ฝ ๊ด‘ํ•™ ์†Œ์ž ๋ Œ์ฆˆ๋ฅผ ์ œ์ž‘ ๋ฐ, ํ•ด๋‹น ํ™€๋กœ๊ทธ๋ž˜ํ”ฝ ๊ด‘ํ•™ ์†Œ์ž ๋ Œ์ฆˆ๊ฐ€ ๊ทผ์•ˆ ํ™€๋กœ๊ทธ๋ž˜ํ”ฝ ์ฆ๊ฐ•ํ˜„์‹ค ๋””์Šคํ”Œ๋ ˆ์ด์˜ ์˜์ƒ ๊ฒฐํ•ฉ ์†Œ์ž๋กœ ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์ธ๋‹ค. ์ œ์ž‘๋œ ํ™€๋กœ๊ทธ๋ž˜ํ”ฝ ๊ด‘ํ•™ ์†Œ์ž ํ”„๋ฆฐํ„ฐ๋ฅผ ์ด์šฉํ•˜์—ฌ ๋‘ ๊ฐ€์ง€์˜ ์ƒˆ๋กœ์šด ๊ทผ์•ˆ ์ฆ๊ฐ•ํ˜„์‹ค ๋””์Šคํ”Œ๋ ˆ์ด๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” ์‹œ์ฒญ์˜์—ญ์ด ์ฆ๊ฐ€ํ•œ ๊ทผ์•ˆ ํ™€๋กœ๊ทธ๋ž˜ํ”ฝ ์ฆ๊ฐ•ํ˜„์‹ค ๋””์Šคํ”Œ๋ ˆ์ด๋กœ, ๊ณต๊ฐ„๋Œ€์—ญํญ์— ์˜ํ•˜์—ฌ ์ œํ•œ๋œ ์‹œ์ฒญ ์˜์—ญ์„ ์ˆ˜์ง ๋ฐ ์ˆ˜ํ‰ ๋ฐฉํ–ฅ์œผ๋กœ ๋™์‹œ์— ํ™•์žฅํ•  ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ ํ™•์žฅ๋œ ์‹œ์ฒญ ์˜์—ญ์€ ์‚ฌ์šฉ์ž์˜ ์•ˆ๊ตฌ ๊ธธ์ด ๋ฐ ํšŒ์ „ ๊ฐ๋„์— ๋งž์ถฐ ์„ค๊ณ„๋˜์–ด ์‹œ์ฒญ์˜์—ญ ๋ถˆ์ผ์น˜๋กœ ์ธํ•œ ๋น„๋„คํŒ… ๋“ฑ์˜ ์ด๋ฏธ์ง€ ์™œ๊ณก์„ ์ตœ์†Œํ™”ํ•œ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ๋ง๋ง‰ํˆฌ์‚ฌ ํ˜•ํƒœ์˜ ๊ทผ์•ˆ ์ฆ๊ฐ•ํ˜„์‹ค ๋””์Šคํ”Œ๋ ˆ์ด์— ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ๋Š” ํ”„๋ฆฌํผ ๊ฑฐ์šธ ์–ด๋ ˆ์ด ํ™€๋กœ๊ทธ๋ž˜ํ”ฝ ๊ด‘ํ•™ ์†Œ์ž๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ด๋ฅผ ์ด์šฉํ•˜์—ฌ, ๊ธฐ์กด ๊ฑฐ์šธ ์–ด๋ ˆ์ด ๊ธฐ๋ฐ˜์˜ ๋ง๋ง‰ํˆฌ์‚ฌ ๋””์Šคํ”Œ๋ ˆ์ด์˜ ๋ฌธ์ œ์  ์ค‘ ํ•˜๋‚˜์ธ ๊ฑฐ์šธ์ด ์‹œ์•ผ๋ฅผ ๊ฐ€๋ฆฌ๋Š” ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•œ๋‹ค. ๋˜ํ•œ ํ™€๋กœ๊ทธ๋ž˜ํ”ฝ ๊ฑฐ์šธ ๋ฐฐ์—ด์— ์œ„์ƒ ๋ณ€์กฐ ํŒจํ„ด์„ ๊ธฐ๋กํ•˜์—ฌ ์ถ”๊ฐ€์ ์ธ ๋ Œ์ฆˆ ๋“ฑ์˜ ๊ด‘ํ•™๊ณ„ ์—†์ด ์›ํ•˜๋Š” ๊นŠ์ด์— ๋””์Šคํ”Œ๋ ˆ์ด ํ‰๋ฉด์„ ๋„์šธ ์ˆ˜ ์žˆ๊ฒŒ ๋œ๋‹ค. ์ด๋ฅผ ์ด์šฉํ•˜์—ฌ ์ž‘์€ ํผํŒฉํ„ฐ์˜ ๋„“์€ ๊นŠ์ด ํ‘œํ˜„ ๋ฒ”์œ„๋ฅผ ์ง€๋‹ˆ๋Š” ๋ง๋ง‰ํˆฌ์‚ฌํ˜• ๊ทผ์•ˆ ์ฆ๊ฐ•ํ˜„์‹ค ๋””์Šคํ”Œ๋ ˆ์ด๋ฅผ ๊ตฌํ˜„ํ•œ๋‹ค. ๋ณธ ๋ฐ•์‚ฌํ•™์œ„ ๋…ผ๋ฌธ์˜ ๊ฒฐ๊ณผ๋Š” ์‚ฌ์šฉ์ž์˜ ํ•„์š”์— ๊ธฐ๋ฐ˜ํ•œ ๋งž์ถคํ˜• ๊ทผ์•ˆ ์ฆ๊ฐ•ํ˜„์‹ค ๋””์Šคํ”Œ๋ ˆ์ด์˜ ๊ฐœ๋ฐœ์— ๋„์›€์ด ๋  ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค. ๋‚˜์•„๊ฐ€, ๋ณธ ์—ฐ๊ตฌ๋Š” ํ™€๋กœ๊ทธ๋ž˜ํ”ฝ ๊ด‘ํ•™ ์†Œ์ž์˜ ์„ค๊ณ„์™€ ์ œ์ž‘์— ๊ด€ํ•œ ์—ฐ๊ตฌ์˜ ์ƒˆ๋กœ์šด ๊ฐ€๋Šฅ์„ฑ์„ ๋ณด์—ฌ์ค„ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค.1 Introduction 1 1.1 Image combiners of augmented reality near-eye display 1 1.2 Motivation and purpose of this dissertation 8 1.3 Scope and organization 10 2 Holographic optical element printer 12 2.1 Introduction 12 2.2 Overview of the prototype of holographic optical element printer 16 2.3 Analysis of the signal path 21 2.4 Considerations in designing an HOE 27 2.5 Removal of the internal reflection noise using passive optical isolator 32 2.6 Manufacturing customized lens holographic optical element 37 2.7 Discussion 41 2.7.1 HOE printer to modulate both signal and reference beams 41 2.7.2 The term "hogel" used in this dissertation 41 2.8 Summary 44 3 Holographically customized optical combiner for eye-box extended near-eye display 45 3.1 Introduction 45 3.2 Proposed method and its implementation 51 3.3 Implemented prototype 57 3.4 Experiments and results 61 3.5 Discussion 63 3.5.1 Vignetting effect from mismatched pupil position along axial direction 63 3.5.2 Diffraction efficiency simulation according to incident angle 65 3.6 Summary 67 4 Holographically printed freeform mirror array for augmented reality near-eye display 68 4.1 Introduction 68 4.2 Retinal projection NED based on small aperture array 70 4.3 Proposed method 72 4.4 Design method of FMA HOE 75 4.4.1 Depth of field analysis 75 4.4.2 The size of the mirror 77 4.4.3 The distance between the mirrors 79 4.5 Experiments and results 82 4.6 Discussion 86 4.6.1 Eye-box of the system via the angular selectivity of the HOE 86 4.7 Summary 89 5 Conclusion 90 Appendix 104 Abstract (In Korean) 105Docto

    New Approach to Electron Microscopy Imaging of Gel Nanocomposites in situ

    Get PDF
    Characterization of Au-nanocomposites is routinely done with scattering techniques where the structure and ordering of nanoparticles can be analyzed. Imaging of Poloxamer gel-based Au-nanocomposites is usually limited to cryo-TEM imaging of cryo-microtomed thin sections of the specimen. While this approach is applicable for imaging of the individual nanoparticles and gauging their size distribution, it requires altering the state of the specimen and is prone to artifacts associated with preparation protocols. Use of Scanning Transmission Electron Microscopy (S/TEM) with fluid cell in situ provides an opportunity to analysis of these complex materials in their hydrated state with nanometer resolution, yet dispensing dense gel-based samples onto electron-transparent substrates remains challenging. We show that Poloxamer gel-based Au nanocomposites exhibiting thermoreversible behavior can be imaged in a fully hydrated state using a commercially available fluid cell holder, and we describe a specimen preparation method for depositing femtoliter amounts of gel-based nanocomposites directly onto the 50โ€‰nm-thick SiN window membranes. Ultimately, fluid cell S/TEM in situ imaging approach offers a pathway to visualization of individual nanoparticles within a thick gel media while maintaining the hydrated state of the carrier polymeric matrix

    Roadmap on holography

    Get PDF
    From its inception holography has proven an extremely productive and attractive area of research. While specific technical applications give rise to 'hot topics', and three-dimensional (3D) visualisation comes in and out of fashion, the core principals involved continue to lead to exciting innovations in a wide range of areas. We humbly submit that it is impossible, in any journal document of this type, to fully reflect current and potential activity; however, our valiant contributors have produced a series of documents that go no small way to neatly capture progress across a wide range of core activities. As editors we have attempted to spread our net wide in order to illustrate the breadth of international activity. In relation to this we believe we have been at least partially successful.This work was supported by Ministerio de Economรญa, Industria y Competitividad (Spain) under projects FIS2017-82919-R (MINECO/AEI/FEDER, UE) and FIS2015-66570-P (MINECO/FEDER), and by Generalitat Valenciana (Spain) under project PROMETEO II/2015/015
    corecore