842 research outputs found

    A Review on Computational Intelligence Techniques in Cloud and Edge Computing

    Get PDF
    Cloud computing (CC) is a centralized computing paradigm that accumulates resources centrally and provides these resources to users through Internet. Although CC holds a large number of resources, it may not be acceptable by real-time mobile applications, as it is usually far away from users geographically. On the other hand, edge computing (EC), which distributes resources to the network edge, enjoys increasing popularity in the applications with low-latency and high-reliability requirements. EC provides resources in a decentralized manner, which can respond to users’ requirements faster than the normal CC, but with limited computing capacities. As both CC and EC are resource-sensitive, several big issues arise, such as how to conduct job scheduling, resource allocation, and task offloading, which significantly influence the performance of the whole system. To tackle these issues, many optimization problems have been formulated. These optimization problems usually have complex properties, such as non-convexity and NP-hardness, which may not be addressed by the traditional convex optimization-based solutions. Computational intelligence (CI), consisting of a set of nature-inspired computational approaches, recently exhibits great potential in addressing these optimization problems in CC and EC. This article provides an overview of research problems in CC and EC and recent progresses in addressing them with the help of CI techniques. Informative discussions and future research trends are also presented, with the aim of offering insights to the readers and motivating new research directions

    Resource Allocation in Networking and Computing Systems: A Security and Dependability Perspective

    Get PDF
    In recent years, there has been a trend to integrate networking and computing systems, whose management is getting increasingly complex. Resource allocation is one of the crucial aspects of managing such systems and is affected by this increased complexity. Resource allocation strategies aim to effectively maximize performance, system utilization, and profit by considering virtualization technologies, heterogeneous resources, context awareness, and other features. In such complex scenario, security and dependability are vital concerns that need to be considered in future computing and networking systems in order to provide the future advanced services, such as mission-critical applications. This paper provides a comprehensive survey of existing literature that considers security and dependability for resource allocation in computing and networking systems. The current research works are categorized by considering the allocated type of resources for different technologies, scenarios, issues, attributes, and solutions. The paper presents the research works on resource allocation that includes security and dependability, both singularly and jointly. The future research directions on resource allocation are also discussed. The paper shows how there are only a few works that, even singularly, consider security and dependability in resource allocation in the future computing and networking systems and highlights the importance of jointly considering security and dependability and the need for intelligent, adaptive and robust solutions. This paper aims to help the researchers effectively consider security and dependability in future networking and computing systems.publishedVersio

    Edge Learning for 6G-enabled Internet of Things: A Comprehensive Survey of Vulnerabilities, Datasets, and Defenses

    Full text link
    The ongoing deployment of the fifth generation (5G) wireless networks constantly reveals limitations concerning its original concept as a key driver of Internet of Everything (IoE) applications. These 5G challenges are behind worldwide efforts to enable future networks, such as sixth generation (6G) networks, to efficiently support sophisticated applications ranging from autonomous driving capabilities to the Metaverse. Edge learning is a new and powerful approach to training models across distributed clients while protecting the privacy of their data. This approach is expected to be embedded within future network infrastructures, including 6G, to solve challenging problems such as resource management and behavior prediction. This survey article provides a holistic review of the most recent research focused on edge learning vulnerabilities and defenses for 6G-enabled IoT. We summarize the existing surveys on machine learning for 6G IoT security and machine learning-associated threats in three different learning modes: centralized, federated, and distributed. Then, we provide an overview of enabling emerging technologies for 6G IoT intelligence. Moreover, we provide a holistic survey of existing research on attacks against machine learning and classify threat models into eight categories, including backdoor attacks, adversarial examples, combined attacks, poisoning attacks, Sybil attacks, byzantine attacks, inference attacks, and dropping attacks. In addition, we provide a comprehensive and detailed taxonomy and a side-by-side comparison of the state-of-the-art defense methods against edge learning vulnerabilities. Finally, as new attacks and defense technologies are realized, new research and future overall prospects for 6G-enabled IoT are discussed

    Cyber Security and Critical Infrastructures

    Get PDF
    This book contains the manuscripts that were accepted for publication in the MDPI Special Topic "Cyber Security and Critical Infrastructure" after a rigorous peer-review process. Authors from academia, government and industry contributed their innovative solutions, consistent with the interdisciplinary nature of cybersecurity. The book contains 16 articles: an editorial explaining current challenges, innovative solutions, real-world experiences including critical infrastructure, 15 original papers that present state-of-the-art innovative solutions to attacks on critical systems, and a review of cloud, edge computing, and fog's security and privacy issues

    Machine learning and blockchain technologies for cybersecurity in connected vehicles

    Get PDF
    Future connected and autonomous vehicles (CAVs) must be secured againstcyberattacks for their everyday functions on the road so that safety of passengersand vehicles can be ensured. This article presents a holistic review of cybersecurityattacks on sensors and threats regardingmulti-modal sensor fusion. A compre-hensive review of cyberattacks on intra-vehicle and inter-vehicle communicationsis presented afterward. Besides the analysis of conventional cybersecurity threatsand countermeasures for CAV systems,a detailed review of modern machinelearning, federated learning, and blockchain approach is also conducted to safe-guard CAVs. Machine learning and data mining-aided intrusion detection systemsand other countermeasures dealing with these challenges are elaborated at theend of the related section. In the last section, research challenges and future direc-tions are identified
    • …
    corecore