308 research outputs found

    Language Model Applications to Spelling with Brain-Computer Interfaces

    Get PDF
    Within the Ambient Assisted Living (AAL) community, Brain-Computer Interfaces (BCIs) have raised great hopes as they provide alternative communication means for persons with disabilities bypassing the need for speech and other motor activities. Although significant advancements have been realized in the last decade, applications of language models (e.g., word prediction, completion) have only recently started to appear in BCI systems. The main goal of this article is to review the language model applications that supplement non-invasive BCI-based communication systems by discussing their potential and limitations, and to discern future trends. First, a brief overview of the most prominent BCI spelling systems is given, followed by an in-depth discussion of the language models appli

    Sensory theories of developmental dyslexia: three challenges for research.

    Get PDF
    Recent years have seen the publication of a range of new theories suggesting that the basis of dyslexia might be sensory dysfunction. In this Opinion article, the evidence for and against several prominent sensory theories of dyslexia is closely scrutinized. Contrary to the causal claims being made, my analysis suggests that many proposed sensory deficits might result from the effects of reduced reading experience on the dyslexic brain. I therefore suggest that longitudinal studies of sensory processing, beginning in infancy, are required to successfully identify the neural basis of developmental dyslexia. Such studies could have a powerful impact on remediation.This is the accepted manuscript. The final version is available from NPG at http://www.nature.com/nrn/journal/v16/n1/abs/nrn3836.html

    Towards a home-use BCI: fast asynchronous control and robust non-control state detection

    Get PDF
    Eine Hirn-Computer Schnittstelle (engl. Brain-Computer Interface, BCI) erlaubt einem Nutzer einen Computer nur mittels Gehirn-Aktivität zu steuern. Der Hauptanwendungszweck ist die Wiederherstellung verschiedener Funktionen von motorisch eingeschränkten Menschen, zum Beispiel, die Wiederherstellung der Kommunikationsfähigkeit. Bisherige BCIs die auf visuell evozierten Potentialen (VEPs) basieren, erlauben bereits hohe Kommunikationsgeschwindigkeiten. VEPs sind Reaktionen, die im Gehirn durch visuelle Stimulation hervorgerufen werden. Allerdings werden bisherige BCIs hauptsächlich in der Forschung verwendet und sind nicht für reale Anwendungszwecke geeignet. Grund dafür ist, dass sie auf dem synchronen Steuerungsprinzip beruhen, dies bedeutet, dass Aktionen nur in vorgegebenen Zeitslots ausgeführt werden können. Dies bedeutet wiederum, dass der Nutzer keine Aktionen nach seinem Belieben ausführen kann, was für reale Anwendungszwecke ein Problem darstellt. Um dieses Problem zu lösen, müssen BCIs die Intention des Nutzers, das System zu steuern oder nicht, erkennen. Solche BCIs werden asynchron oder selbstbestimmt genannt. Bisherige asynchrone BCIs zeigen allerdings keine ausreichende Genauigkeit bei der Erkennung der Intention und haben zudem eine deutlich reduzierte Kommunikationsgeschwindigkeit im Vergleich zu synchronen BCIs. In dieser Doktorarbeit wird das erste asynchrone BCI vorgestellt, welches sowohl eine annäherungsweise perfekte Erkennung der Intention des Nutzers als auch eine ähnliche Kommunikationsgeschwindigkeit wie synchrone BCIs erzielt. Dies wurde durch die Entwicklung eines allgemeinen Modells für die Vorhersage von sensorischen Reizen erzielt. Dadurch können beliebige visuelle Stimulationsmuster basierend auf den gemessenen VEPs vorhergesagt werden. Das Modell wurde sowohl mit einem "traditionellen" maschinellen Lernverfahren als auch mit einer deep-learning Methode implementiert und evaluiert. Das resultierende asynchrone BCI übertrifft bisherige Methoden in mehreren Disziplinen um ein Vielfaches und ist ein wesentlicher Schritt, um BCI-Anwendungen aus dem Labor in die Praxis zu bringen. Durch weitere Optimierungen, die in dieser Arbeit diskutiert werden, könnte es sich zum allerersten geeigneten BCI für Endanwender entwickeln, da es effektiv (hohe Genauigkeit), effizient (schnelle Klassifizierungen), und einfach zu bedienen ist. Ein weiteres Alleinstellungsmerkmal ist, dass das entwickelte BCI für beliebige Szenarien verwendet werden kann, da es annähernd unendlich viele gleichzeitige Aktionsfelder erlaubt.Brain-Computer Interfaces (BCIs) enable users to control a computer by using pure brain activity. Their main purpose is to restore several functionalities of motor disabled people, for example, to restore the communication ability. Recent BCIs based on visual evoked potentials (VEPs), which are brain responses to visual stimuli, have shown to achieve high-speed communication. However, BCIs have not really found their way out of the lab yet. This is mainly because all recent high-speed BCIs are based on synchronous control, which means commands can only be executed in time slots controlled by the BCI. Therefore, the user is not able to select a command at his own convenience, which poses a problem in real-world applications. Furthermore, all those BCIs are based on stimulation paradigms which restrict the number of possible commands. To be suitable for real-world applications, a BCI should be asynchronous, or also called self-paced, and must be able to identify the user’s intent to control the system or not. Although there some asynchronous BCI approaches, none of them achieved suitable real-world performances. In this thesis, the first asynchronous high-speed BCI is proposed, which allows using a virtually unlimited number of commands. Furthermore, it achieved a nearly perfect distinction between intentional control (IC) and non-control (NC), which means commands are only executed if the user intends to. This was achieved by a completely different approach, compared to recent methods. Instead of using a classifier trained on specific stimulation patterns, the presented approach is based on a general model that predicts arbitrary stimulation patterns. The approach was evaluated with a "traditional" as well as a deep machine learning method. The resultant asynchronous BCI outperforms recent methods by a multi-fold in multiple disciplines and is an essential step for moving BCI applications out of the lab and into real life. With further optimization, discussed in this thesis, it could evolve to the very first end-user suitable BCI, as it is effective (high accuracy), efficient (fast classifications), ease of use, and allows to perform as many different tasks as desired

    Advancing Pattern Recognition Techniques for Brain-Computer Interfaces: Optimizing Discriminability, Compactness, and Robustness

    Get PDF
    In dieser Dissertation formulieren wir drei zentrale Zielkriterien zur systematischen Weiterentwicklung der Mustererkennung moderner Brain-Computer Interfaces (BCIs). Darauf aufbauend wird ein Rahmenwerk zur Mustererkennung von BCIs entwickelt, das die drei Zielkriterien durch einen neuen Optimierungsalgorithmus vereint. DarĂĽber hinaus zeigen wir die erfolgreiche Umsetzung unseres Ansatzes fĂĽr zwei innovative BCI Paradigmen, fĂĽr die es bisher keine etablierte Mustererkennungsmethodik gibt

    Workshops of the Sixth International Brain–Computer Interface Meeting: brain–computer interfaces past, present, and future

    Get PDF
    Brain–computer interfaces (BCI) (also referred to as brain–machine interfaces; BMI) are, by definition, an interface between the human brain and a technological application. Brain activity for interpretation by the BCI can be acquired with either invasive or non-invasive methods. The key point is that the signals that are interpreted come directly from the brain, bypassing sensorimotor output channels that may or may not have impaired function. This paper provides a concise glimpse of the breadth of BCI research and development topics covered by the workshops of the 6th International Brain–Computer Interface Meeting

    Exploiting code-modulating, Visually-Evoked Potentials for fast and flexible control via Brain-Computer Interfaces

    Get PDF
    Riechmann H. Exploiting code-modulating, Visually-Evoked Potentials for fast and flexible control via Brain-Computer Interfaces. Bielefeld: Universität Bielefeld; 2014

    Top-down modulation of task features in rapid instructed task learning: An ERP study

    Get PDF
    Rapid instructed task learning (RITL) is the ability to quickly restructure behaviour into new configurations based on explicit instruction (Cole, Laurent, & Stocco, 2012). The majority of RITL research has been dominated by neuroimaging studies, which suggest unique involvements of the lateral prefrontal cortex and the posterior parietal cortex, although the exact mechanisms of RITL execution remain poorly understood. The electrophysiological responses of 22 adults undergoing a computerised RITL sequential dependency task were obtained, with the expectation that task relevance processes would be observable at posterior N1, anterior P2a/N2, and central P3b. Early top-down amplitudinal modulation was found in N1 for all item types, and this was related to non-target N2 amplitudes, with both time windows showing preliminary support for compositionality of individual task components. Evidence for compositionality in attentional template matching processes was also found in the P2a/N2 complex. Central P3b did not appear to be involved in task relevance processes per se, perhaps being more involved in attentional resource allocation. These findings answer important questions as how to task-relevant feature identification and task component sequencing occur in RITL
    • …
    corecore