511 research outputs found

    Traction Control Allocation Employing Vehicle Motion Feedback Controller for Four-wheel-independent-drive Vehicle

    Full text link
    A novel vehicle traction algorithm solving the traction force allocation problem based on vehicle center point motion feedback controller is proposed in this paper. The center point motion feedback control system proposed utilizes individual wheel torque actuation assuming all wheels are individually driven. The approach presented is an alternative to the various direct optimization-based traction force/torque allocation schemes. The proposed system has many benefits, such as significant reduction of the algorithm complexity by merging most traction system functionalities into one. Such a system enables significant simplification, unification, and standardization of powertrain control design. Moreover, many signals needed by conventional traction force allocation methods are not required to be measured or estimated with the proposed approach, which are among others vehicle mass, wheel loading (normal force), and vehicle center of gravity location. Vehicle center point trajectory setpoints and measurements are transformed to each wheel, where the tracking is ensured using the wheel torque actuation. The proposed control architecture performance and analysis are shown using the nonlinear twin-track vehicle model implemented in Matlab &\& Simulink environment. The performance is then validated using high fidelity FEE CTU in Prague EFORCE formula model implemented in IPG CarMaker environment with selected test scenarios. Finally, the results of the proposed control allocation are compared to the state-of-the-art approach

    ๊ณ ์„ฑ๋Šฅ ํ•œ๊ณ„ ํ•ธ๋“ค๋ง์„ ์œ„ํ•œ ์ธํœ ๋ชจํ„ฐ ํ† ํฌ๋ฒกํ„ฐ๋ง ์ œ์–ด

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€, 2021.8. ์ด๊ฒฝ์ˆ˜.์ง€๋‚œ 10๋…„ ๋™์•ˆ ์ฐจ๋Ÿ‰ ์ž์„ธ ์ œ์–ด์‹œ์Šคํ…œ(ESC)์€ ์น˜๋ช…์ ์ธ ์ถฉ๋Œ์„ ๋ฐฉ์ง€ํ•˜๊ธฐ ์œ„ํ•ด ๋งŽ์€ ์ƒ์šฉ ์ฐจ๋Ÿ‰์—์„œ ๋น„์•ฝ์ ์œผ๋กœ ๋ฐœ์ „๋˜๊ณ  ๊ฐœ๋ฐœ๋˜๊ณ  ์žˆ๋‹ค. ํŠนํžˆ, ์ฐจ๋Ÿ‰ ์ž์„ธ ์ œ์–ด ์‹œ์Šคํ…œ์€ ์•…์ฒœํ›„๋กœ ์ธํ•œ ๋ฏธ๋„๋Ÿฌ์šด ๋„๋กœ์™€ ๊ฐ™์€ ์œ„ํ—˜ํ•œ ๋„๋กœ์—์„œ ๋ถˆ์•ˆ์ •ํ•œ ์ฐจ๋Ÿ‰ ์ฃผํ–‰ ์กฐ๊ฑด์—์„œ ์‚ฌ๊ณ ๋ฅผ ํ”ผํ•˜๋Š”๋ฐ ํฐ ์—ญํ• ์„ ํ•œ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜, ์ตœ๊ทผ์˜ ๊ฒฝ์šฐ, ๊ณ ์„ฑ๋Šฅ ์ฐจ๋Ÿ‰ ๋˜๋Š” ์Šคํฌ์ธ ์นด ๋“ฑ์˜ ๊ฒฝ์šฐ ์ œ๋™์ œ์–ด์˜ ๋นˆ๋ฒˆํ•œ ๊ฐœ์ž…์€ ์šด์ „์˜ ์ฆ๊ฑฐ์›€์„ ๊ฐ์†Œ์‹œํ‚ค๋Š” ๋ถˆ๋งŒ๋„ ์กด์žฌํ•œ๋‹ค. ์ตœ๊ทผ ์ฐจ๋Ÿ‰์˜ ์ „๋™ํ™”์™€ ํ•จ๊ป˜, ์ž๋Ÿ‰ ์ž์„ธ ์ œ์–ด์‹œ์Šคํ…œ์˜ ์ž‘๋™ ์˜์—ญ์ธ ํ•œ๊ณ„ ์ฃผํ–‰ ํ•ธ๋“ค๋ง ์กฐ๊ฑด์—์„œ ๊ฐ ํœ ์˜ ๋…๋ฆฝ์ ์ธ ๊ตฌ๋™์„ ์ ์šฉ ํ•  ์ˆ˜ ์žˆ๋Š” ์‹œ์Šคํ…œ ์ค‘ ํ•˜๋‚˜์ธ ์ธํœ  ๋ชจํ„ฐ ์‹œ์Šคํ…œ์„ ์‚ฌ์šฉํ•˜์—ฌ ์ฐจ๋Ÿ‰์˜ ์ข…, ํšก๋ฐฉํ–ฅ ํŠน์„ฑ์„ ์ œ์–ด ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜๋Š” ํ† ํฌ ๋ฒกํ„ฐ๋ง ์ œ์–ด๊ธฐ์ˆ ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ๊ฐ€ ํ™œ๋ฐœํ•˜๋‹ค. ๋”ฐ๋ผ์„œ, ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ฐจ๋Ÿ‰์˜ ์„ ํšŒ ํ•œ๊ณ„ ํ•ธ๋“ค๋ง ์กฐ๊ฑด์—์„œ ์•ˆ์ •์„ฑ๊ณผ ์ฃผํ–‰ ๋‹ค์ด๋‚˜๋ฏน ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋Š” ํ† ํฌ ๋ฒกํ„ฐ๋ง ์ œ์–ด๊ธฐ๋ฅผ ์ œ์•ˆํ•˜๊ณ ์ž ํ•œ๋‹ค. ๋จผ์ €, ์ฐจ๋Ÿ‰์˜ ๋น„์„ ํ˜• ์ฃผํ–‰ ๊ตฌ๊ฐ„์ธ ํ•œ๊ณ„ ํ•ธ๋“ค๋ง ์กฐ๊ฑด์— ๋Œ€ํ•œ ์ž๋™ ๋“œ๋ฆฌํ”„ํŠธ ์ œ์–ด ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ œ์•ˆํ•œ๋‹ค. ์ด ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ด์šฉํ•˜์—ฌ ํ† ํฌ๋ฒกํ„ฐ๋ง์ œ์–ด์— ์ฐจ๋Ÿ‰์˜ ๋‹ค์ด๋‚˜๋ฏนํ•œ ์ฃผํ–‰๋ชจ๋“œ์— ๋Œ€ํ•œ ํ†ต์ฐฐ๋ ฅ์„ ์ œ๊ณตํ•˜๊ณ  ๋ฏธ๋„๋Ÿฌ์šด ๋„๋กœ์—์„œ ์ฐจ๋Ÿ‰์˜ ๋†’์€ ์Šฌ๋ฆฝ ๊ฐ๋„์˜ ์•ˆ์ •์„ฑ ์ œ์–ด๋ฅผ ์ œ๊ณต ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ, ์ธํœ  ๋ชจํ„ฐ ์‹œ์Šคํ…œ์„ ์ฐจ๋Ÿ‰์˜ ์ „๋ฅœ์— 2๊ฐœ ๋ชจํ„ฐ๋กœ ์‚ฌ์šฉํ•˜์—ฌ ์ฐจ๋Ÿ‰ ๊ณ ์œ ์˜ ํŠน์„ฑ์ธ ์ฐจ๋Ÿ‰ ์–ธ๋”์Šคํ‹ฐ์–ด ๊ตฌ๋ฐฐ๋ฅผ ์ง์ ‘์  ์ œ์–ด๋ฅผ ์ˆ˜ํ–‰ํ•˜์—ฌ, ์ฐจ๋Ÿ‰์˜ ํ•ธ๋“ค๋ง ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œ์ผฐ๋‹ค. ์ œ์–ด๊ธฐ์˜ ์ฑ„ํ„ฐ๋ง ํšจ๊ณผ๋ฅผ ์ค„์ด๊ณ  ๋น ๋ฅธ ์‘๋‹ต์„ ์–ป๊ธฐ ์œ„ํ•ด ์ƒˆ๋กœ์šด ๊ณผ๋„ ๋งค๊ฐœ ๋ณ€์ˆ˜๊ฐ€ ์ด์šฉํ•˜์—ฌ ์ˆ˜์‹ํ™”ํ•˜์—ฌ ๊ตฌ์„ฑํ•˜์˜€์œผ๋ฉฐ, ์ฐจ๋Ÿ‰์˜ ์ •์ƒ ์ƒํƒœ ๋ฐ ๊ณผ๋„ ํŠน์„ฑ ํ–ฅ์ƒ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ISO ๊ธฐ๋ฐ˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ฐ ์ฐจ๋Ÿ‰ ์‹คํ—˜์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ ์š” ์ œ์–ด๊ธฐ์™€ ํšก ์Šฌ๋ฆฝ ๊ฐ๋„ ์ œ์–ด๊ธฐ๋กœ ๊ตฌ์„ฑ๋œ MASMC (Multiple Adaptive Sliding Mode Control) ์ ‘๊ทผ ๋ฐฉ์‹์„ ์‚ฌ์šฉํ•˜๋Š” 4๋ฅœ ๋ชจํ„ฐ ์‹œ์Šคํ…œ์„ ์‚ฌ์šฉํ•œ ๋™์  ํ† ํฌ๋ฒกํ„ฐ๋ง ์ œ์–ด๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๋†’์€ ๋น„์„ ํ˜• ํŠน์„ฑ์„ ๊ฐ€์ง„ ์ฐจ๋Ÿ‰์˜ ์ „ํ›„๋ฅœ ํƒ€์ด์–ด์˜ ์ฝ”๋„ˆ๋ง ๊ฐ•์„ฑ์€ ์ ์‘์ œ์–ด๊ธฐ๋ฒ•์„ ์ด์šฉํ•˜์—ฌ ์˜ˆ์ธกํ•˜์˜€๋‹ค. ๋”ฐ๋ผ์„œ, ์•ˆ์ „๋ชจ๋“œ์™€ ๋‹ค์ด๋‚˜๋ฏน ๋ชจ๋“œ๋ฅผ ๊ตฌ์„ฑํ•˜์—ฌ, ์šด์ „์ž๋กœ ํ•˜์—ฌ๊ธˆ ์›ํ•˜๋Š” ์ฃผํ–‰์˜ ์กฐ๊ฑด์— ๋งž๊ฒŒ ์„ ํƒํ•  ์ˆ˜ ์žˆ๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ตฌํ˜„ํ•˜์˜€๋‹ค. ์ด MASMC ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ํ–ฅํ›„ ์ „๋™ํ™” ์ฐจ๋Ÿ‰์— ์ฃผํ–‰์•ˆ์ •์„ฑ ํ–ฅ์ƒ๊ณผ ๋‹ค์ด๋‚˜๋ฏนํ•œ ์ฃผํ–‰์˜ ์ฆ๊ฑฐ์›€์„ ์ฃผ๋Š” ๊ธฐ์ˆ ๋กœ์จ, ์ „์ฐจ๋Ÿ‰ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์ด์šฉํ•˜์—ฌ ๊ฒ€์ฆํ•˜์˜€๋‹ค.In the last ten decades, vehicle stability control systems have been dramatically developed and adapted in many commercial vehicles to avoid fatal crashes. Significantly, ESC (Electric Stability Control) system can help escape the accident from unstable driving conditions with dangerous roads such as slippery roads due to inclement weather conditions. However, for the high performed vehicle, frequent intervention from ESC reduces the pleasure of fun-to-drive. Recently, the development of traction control technologies has been taking place with that of the electrification of vehicles. The IWMs (In-Wheel Motor system), which is one of the systems that can apply independent drive of each wheel, for the limit handling characteristics, which are the operation areas of the ESC, is introduced for the control that enables the lateral characteristics of the vehicle dynamics. Firstly, the automated drift control algorithm can be proposed for the nonlinear limit handling condition of vehicles. This approach can give an insight of fun-to-drive mode to TV (Torque Vector) control scheme, but also the stability control of high sideslip angle of the vehicle on slippery roads. Secondly, using IWMs system with front two motors, understeer gradient of vehicle, which is the unique characteristics of vehicle can be used for the proposed control strategy. A new transient parameter is formulated to be acquired rapid response of controller and reducing chattering effects. Simulation and vehicle tests are conducted for validation of TV control algorithm with steady-state and transient ISO-based tests. Finally, dynamic torque vectoring control with a four-wheel motor system with Multiple Adaptive Sliding Mode Control (MASMC) approach, which is composed of a yaw rate controller and sideslip angle controller, is introduced. Highly nonlinear characteristics, cornering stiffnesses of front and rear tires are estimated by adaptation law with measuring data. Consequently, there are two types of driving modes, the safety mode and the dynamic mode. MASMC algorithm can be found and validated by simulation in torque vectoring technology to improve the handling performance of fully electric vehicles.Chapter 1 Introduction 7 1.1. Background and Motivation 7 1.2. Literature review 11 1.3. Thesis Objectives 15 1.4. Thesis Outline 15 Chapter 2 Vehicle dynamic control at limit handling 17 2.1. Vehicle Model and Analysis 17 2.1.1. Lateral dynamics of vehicle 17 2.1.2. Longitudinal dynamics of vehicle 20 2.2. Tire Model 24 2.3. Analysis of vehicle drift for fun-to-drive 28 2.4. Designing A Controller for Automated Drift 34 2.4.1. Lateral controller 35 2.4.2. Longitudinal Controller 37 2.4.3. Stability Analysis 39 2.4.4. Validation with simulation and test 40 Chapter 3 Torque Vectoring Control with Front Two Motor In-Wheel Vehicles 47 3.1. Dynamic Torque Vectoring Control 48 3.1.1. In-wheel motor system (IWMs) 48 3.1.2. Dynamic system modeling 49 3.1.3. Designing controller 53 3.2. Validation with Simulation and Experiment 59 3.2.1. Simulation 59 3.2.2. Vehicle Experiment 64 Chapter 4 Dynamic handling control for Four-wheel Drive In-Wheel platform 75 4.1. Vehicle System Modeling 76 4.2. Motion Control based on MASMC 78 4.2.1. Yaw motion controller for the inner ASMC 80 4.2.2. Sideslip angle controller for the outer ASMC 84 4.3. Optimal Torque Distribution (OTD) 88 4.3.1. Constraints of dynamics 88 4.3.2. Optimal torque distribution law 90 4.4. Validation with Simulation 91 4.4.1. Simulation setup 91 4.4.2. Simulation results 92 Chapter 5 Conclusion and Future works 104 5.1 Conclusion 104 5.2 Future works 106 Bibliography 108 Abstract in Korean 114๋ฐ•

    Optimisation methods for battery electric vehicle powertrain.

    Get PDF
    The battery electric vehicle (BEV) is considered to be one of the solutions for reducing greenhouse gasses and an alternative means of transportation. However, some current limitations such as higher powertrain costs, limited driving range and negative perceptions of that range, have reduced BEVsโ€™ popularity. This thesis aims to improve the tank-to-wheel energy consumption of the BEV by presenting possible powertrain architectures and developing new tools for powertrain analysis. The study has two main objectives; the first is to evaluate different possible powertrain topologies. The selected topologies include the single-motor single-axle, the double-motor double-axle, the in-wheel-motor single-axle and the in-wheel-motor double-axle. Models of these powertrains have been modified from the Quasi-Static toolbox, using vehicle parameters from the Nissan Leaf and subject to state assumptions. The multi-objective optimisation method has been applied to establish the costs/benefits of energy consumption, acceleration performance and powertrain cost. The results show that each topology presents its own benefits as the in-wheel types are good at energy efficiency and drivability, while the cost of the powertrain is the major drawback. The non-in-wheel-motor vehicle provides sufficient energy efficiency and driveability with lower powertrain cost. The second objective is to evaluate a possible alternative tool for BEV powertrain modelling and optimisation. The tool consists of four methodologies: sensitivity analysis, differential flatness, the Chebfun computational tool and the multi-disciplinary optimisation method. The study presents a possible alternative optimisation tool which may perhaps benefit the designer. This new tool may not be as convenient as the previous one; however, the new tool may give the designer greater understanding and insight into the BEV powertrain.PhD in Transport System

    On the Experimental Analysis of Integral Sliding Modes for Yaw Rate and Sideslip Control of an Electric Vehicle with Multiple Motors

    Get PDF
    With the advent of electric vehicles with multiple motors, the steady-state and transient cornering responses can be designed and implemented through the continuous torque control of the individual wheels, i.e., torque-vectoring or direct yaw moment control. The literature includes several papers on sliding mode control theory for torque-vectoring, but the experimental investigation is so far limited. More importantly, to the knowledge of the authors, the experimental comparison of direct yaw moment control based on sliding modes and typical controllers used for stability control in production vehicles is missing. This paper aims to reduce this gap by presenting and analyzing an integral sliding mode controller for concurrent yaw rate and sideslip control. A new driving mode, the Enhanced Sport mode, is proposed, inducing sustained high values of sideslip angle, which can be limited to a specified threshold. The system is experimentally assessed on a four-wheel-drive electric vehicle. The performance of the integral sliding mode controller is compared with that of a linear quadratic regulator during step steer tests. The results show that the integral sliding mode controller significantly enhances the tracking performance and yaw damping compared to the more conventional linear quadratic regulator based on an augmented singletrack vehicle model formulation. ยฉ 2018, The Korean Society of Automotive Engineers and Springer-Verlag GmbH Germany, part of Springer Natur

    Design of a Switched Reluctance Motor Controller Applied to Electric Vehicles Traction.

    Get PDF
    Switched reluctance motors (SRM) are a suitable and cheaper alternative for current electric vehicle (EV) powertrain topologies due to low weight, high torque/size ratio and simple construction, without permanent magnets and a minimum amount of copper. The main setback that these motors encounter is the high torque ripple, mainly due to the highly nonlinear torque generation mechanism. Torque ripple leads to mechanical vibrations that require unnecessary wear in the mechanical powertrain. In conventional torque sharing function (TSF) control, the torque produced by the machine cannot follow the expected torque for an extended speed range, mostly due to the imposed demagnetization of the outgoing phase at high speeds, resulting in poor performance and causing a high torque ripple. The main goal of this work is to design and validate a new SRM control method suitable for EV propulsion. The proposed controller applies a feedback loop that improves the weakness of the conventional methods, keeping a fast dynamic response. The simulation results show that torque ripple can effectively be reduced for a high torque and speed range. The researched algorithm is developed using Matlab/Simulink, basing the validation on experiments with a 60kW SRM, 12/8 poles prototype designed using finite element methods (FEM)

    Optimal Direct Yaw Moment Control of a 4WD Electric Vehicle

    Get PDF
    This thesis is concerned with electronic stability of an all-wheel drive electric vehicle with independent motors mounted in each wheel. The additional controllability and speed permitted using independent motors can be exploited to improve the handling and stability of electric vehicles. In this thesis, these improvements arise from employing a direct yaw moment control (DYC) system that seeks to adapt the understeer gradient of the vehicle and achieve neutral steer by employing a supervisory controller and simultaneously tracking an ideal yaw rate and ideal sideslip angle. DYC enhances vehicle stability by generating a corrective yaw moment realized by a torque vectoring controller which generates an optimal torque distribution among the four wheels. The torque allocation at each instant is computed by finding a solution to an optimization problem using gradient descent, a well-known algorithm that seeks the minimum cost employing the gradient of the cost function. A cost function seeking to minimize excessive wheel slip is proposed as the basis of the optimization problem, while the constraints come from the physical limitations of the motors and friction limits between the tires and road. The DYC system requires information about the tire forces in real-time, so this study presents a framework for estimating the tire force in all three coordinate directions. The sideslip angle is also a crucial quantity that must be measured or estimated but is outside the scope of this study. A comparative analysis of three different formulations of sliding mode control used for computation of the corrective yaw moment and an evaluation of how successfully they achieve neutral steer is presented. IPG Automotiveโ€™s CarMaker software, a high-fidelity vehicle simulator, was used as the plant model. A custom electric powertrain model was developed to enable any CarMaker vehicle to be reconfigured for independent control of the motors. This custom powertrain, called TVC_OpenXWD uses the torque/speed map of a Protean Pd18 implemented with lookup tables for each of the four motors. The TVC_OpenXWD powertrain model and controller were designed in MATLAB and Simulink and exported as C code to run them as plug-ins in CarMaker. Simulations of some common maneuvers, including the J-turn, sinusoidal steer, skid pad, and mu-split, indicate that employing DYC can achieve neutral steer. Additionally, it simultaneously tracks the ideal yaw rate and sideslip angle, while maximizing the traction on each tire[CB1] . The control system performance is evaluated based on its ability to achieve neutral steer by means of tracking the reference yaw rate, stabilizing the vehicle by means of reducing the sideslip angle, and to reduce chattering. A comparative analysis of sliding mode control employing a conventional switching function (CSMC), modified switching function (MSMC), and PID control (HSMC) demonstrates that the MSMC outperforms the other two methods in addition to the open loop system

    Trajectory optimization based on recursive B-spline approximation for automated longitudinal control of a battery electric vehicle

    Get PDF
    Diese Arbeit beschreibt ein neuartiges Verfahren zur linearen und nichtlinearen gewichteten Kleinste-Quadrate-Approximation einer unbeschrรคnkten Anzahl von Datenpunkten mit einer B-Spline-Funktion. Das entwickelte Verfahren basiert auf iterativen Algorithmen zur Zustandsschรคtzung und sein Rechenaufwand nimmt linear mit der Anzahl der Datenpunkte zu. Das Verfahren ermรถglicht eine Verschiebung des beschrรคnkten Definitionsbereichs einer B-Spline-Funktion zur Laufzeit, sodass der aktuell betrachtete Datenpunkt ungeachtet des anfangs gewรคhlten Definitionsbereichs bei der Approximation berรผcksichtigt werden kann. Zudem ermรถglicht die Verschiebeoperation die Reduktion der GrรถรŸen der Matrizen in den Zustandsschรคtzern zur Senkung des Rechenaufwands sowohl in Offline-Anwendungen, in denen alle Datenpunkte gleichzeitig zur Verarbeitung vorliegen, als auch in Online-Anwendungen, in denen in jedem Zeitschritt weitere Datenpunkte beobachtet werden. Das Trajektorienoptimierungsproblem wird so formuliert, dass das Approximationsverfahren mit Datenpunkten aus Kartendaten eine B-Spline-Funktion berechnet, die die gewรผnschte Geschwindigkeitstrajektorie bezรผglich der Zeit reprรคsentiert. Der Rechenaufwand des resultierenden direkten Trajektorienoptimierungsverfahrens steigt lediglich linear mit der unbeschrรคnkten zeitlichen Trajektorienlรคnge an. Die Kombination mit einem adaptiven Modell des Antriebsstrangs eines batterie-elektrischen Fahrzeugs mit festem Getriebeรผbersetzungsverhรคltnis ermรถglicht die Optimierung von Geschwindigkeitstrajektorien hinsichtlich Fahrzeit, Komfort und Energieverbrauch. Das Trajektorienoptimierungsverfahren wird zu einem Fahrerassistenzsystem fรผr die automatisierte Fahrzeuglรคngsfรผhrung erweitert, das simulativ und in realen Erprobungsfahrten getestet wird. Simulierte Fahrten auf der gewรคhlten Referenzstrecke benรถtigten bis zu 3,4 % weniger Energie mit der automatisierten Lรคngsfรผhrung als mit einem menschlichen Fahrer bei derselben Durchschnittsgeschwindigkeit. Fรผr denselben Energieverbrauch erzielt die automatisierte Lรคngsfรผhrung eine 2,6 % hรถhere Durchschnittsgeschwindigkeit als ein menschlicher Fahrer

    Reconfigurable Integrated Vehicle Stability Control Using Optimal Control Techniques

    Get PDF
    The motivation for the development of vehicle stability control systems comes from the fact that vehicle dynamic behavior in unfavorable driving conditions such as low road-tire adhesion and high speed differs greatly from its nominal behavior. Due to this unexpected behavior, a driver may not be successful in controlling the vehicle in challenging driving situations based only on her/his everyday driving experience. Several noteworthy research works have been conducted on stability control systems over the last two decades to prevent car accidents due to human error. Most of the resultant stability controllers contain individual modules, where each perform a particular task such as yaw tracking, sideslip control, or wheel slip control. These design requirements may contradict each other in some driving scenarios. In such situations, inconsistent control actions can be generated with individual modules. The development of a stability controller that can satisfy diverse and often contradictory requirements is a great challenge. In general, transferring a control structure from one vehicle to another with a different drivetrain layout and actuation system configuration requires remarkable rectifications and repetition of tuning processes from the beginning to achieve a similar performance. This can be considered to be a serious drawback for car manufacturing companies since it results in extra effort, time, and expenses in redesigning and retuning the controller. In this thesis, an integrated controller with a modular structure has been designed to concurrently provide control of the vehicle chassis (yaw rate and sideslip control) and wheel stability (wheel slip ratio control). The proposed control structure incorporates longitudinal and lateral vehicle dynamics to decide on a unified control action. This control action is an outcome of solving an optimization problem that considers all the control objectives in a single cost function, so integrated wheel and vehicle stability is guaranteed. Moreover, according to the particular modular design of the proposed control structure, it can be easily reconfigured to work with different drivetrain layouts such as all-wheel-drive, front-wheel-drive, and rear-wheel-drive, as well as various actuators such as torque vectoring, differential braking, and active steering systems. The high-level control module provides a Center of Gravity (CG) based error analysis and determines the required longitudinal forces and yaw moment adjustments. The low-level control module utilizes this information to allocate control actions optimally at each vehicle corner (wheel) through a single or multi-actuator regime. In order to consider the effect of the actuator dynamics, a mathematical description of the auction system is included in distribution objective function. Therefore, a legitimate control performance is promised in situations requiring shifting from one configuration to another with minimal modifications. The performance of the proposed modular control structure is examined in simulations with a high-fidelity model of an electric GM Equinox vehicle. The high-fidelity model has been developed and provided by GM and the use of the model is to reduce the number of labor-intensive vehicle test and is to test extreme and dangerous driving conditions. Several driving scenarios with severe steering and throttle commands, then, are designed to evaluate the capability of the proposed control structure in integrated longitudinal and lateral vehicle stabilization on slippery road condition. Experimental tests also have been performed with two different electric vehicles for real-time implementation as well as validation purposes. The observations verified the performance qualifications of the proposed control structure to preserve integrated wheel and vehicle chassis stability in all track tests
    • โ€ฆ
    corecore