1,127 research outputs found

    Iterative learning control for constrained linear systems

    Get PDF
    This paper considers iterative learning control for linear systems with convex control input constraints. First, the constrained ILC problem is formulated in a novel successive projection framework. Then, based on this projection method, two algorithms are proposed to solve this constrained ILC problem. The results show that, when perfect tracking is possible, both algorithms can achieve perfect tracking. The two algorithms differ however in that one algorithm needs much less computation than the other. When perfect tracking is not possible, both algorithms can exhibit a form of practical convergence to a "best approximation". The effect of weighting matrices on the performance of the algorithms is also discussed and finally, numerical simulations are given to demonstrate the e®ectiveness of the proposed methods

    3D Simulation of Electron and Ion Transmission of GEM-based Detectors

    Full text link
    Time Projection Chamber (TPC) has been chosen as the main tracking system in several high-flux and high repetition rate experiments. These include on-going experiments such as ALICE and future experiments such as PANDA at FAIR and ILC. Different R&D\mathrm{R}\&\mathrm{D} activities were carried out on the adoption of Gas Electron Multiplier (GEM) as the gas amplification stage of the ALICE-TPC upgrade version. The requirement of low ion feedback has been established through these activities. Low ion feedback minimizes distortions due to space charge and maintains the necessary values of detector gain and energy resolution. In the present work, Garfield simulation framework has been used to study the related physical processes occurring within single, triple and quadruple GEM detectors. Ion backflow and electron transmission of quadruple GEMs, made up of foils with different hole pitch under different electromagnetic field configurations (the projected solutions for the ALICE TPC) have been studied. Finally a new triple GEM detector configuration with low ion backflow fraction and good electron transmission properties has been proposed as a simpler GEM-based alternative suitable for TPCs for future collider experiments

    Readout of GEM Detectors Using the Medipix2 CMOS Pixel Chip

    Get PDF
    We have operated a Medipix2 CMOS readout chip, with amplifying, shaping and charge discriminating front-end electronics integrated on the pixel-level, as a highly segmented direct charge collecting anode in a three-stage gas electron multiplier (Triple-GEM) to detect the ionization from 55^{55}Fe X-rays and electrons from 106^{106}Ru. The device allows to perform moderate energy spectroscopy measurements (20 % FWHM at 5.9 keV XX-rays) using only digital readout and two discriminator thresholds. Being a truly 2D-detector, it allows to observe individual clusters of minimum ionizing charged particles in Ar/CO2Ar/CO_2 (70:30) and He/CO2He/CO_2 (70:30) mixtures and to achieve excellent spatial resolution for position reconstruction of primary clusters down to 50μm\sim 50 \mu m, based on the binary centroid determination method.Comment: 18 pages, 14 pictures. submitted to Nuclear Instruments and Methods in Physics Research

    Electronic operation and control of high-intensity gas-discharge lamps

    Get PDF
    The ever increasing amount of global energy consumption based on the application of fossil fuels is threatening the earth’s natural resources and environment. Worldwide, grid-based electric lighting consumes 19 % of total global electricity production. For this reason the transition towards energy efficient lighting plays an important environmental role. One of the key technologies in this transition is High-Intensity Discharge (HID) lighting. The technical revolution in gas-discharge lamps has resulted in the highlyefficient lamps that are available nowadays. As with most energy efficient light solutions, all HID lighting systems require a ballast to operate. Traditionally, magnetic ballast designs were the only choice available for HID lighting systems. Today, electronic lampdrivers can offer additional power saving, flicker free operation, and miniaturisation. Electronic lamp operation enables additional degrees of freedom in lamp-current control over the conventional electro-magnetic (EM) ballasts. The lamp-driver system performance depends on both the dynamics of the lamp and the driver. This thesis focuses on the optimisation of electronically operated HID systems, in terms of highly-efficient lamp-driver topologies and, more specifically, lamp-driver interaction control. First, highly-efficient power topologies to operate compact HID lamps on low-frequency-square-wave (LFSW) current are explored. The proposed two-stage electronic lamp-driver consists of a Power Factor Corrector (PFC) stage that meets the power utility standards. This converter is coupled to a stacked buck converter that controls the lamp-current. Both stages are operated in Zero Voltage Switching (ZVS) mode in order to reduce the switching losses. The resulting two-stage lamp-drivers feature flexible controllability, high efficiency, and high power density, and are suitable for power sandwich packaging. Secondly, lamp-driver interaction (LDI) has been studied in the simulation domain and control algorithms have been explored that improve the stability, and enable system optimisation. Two HID lamp models were developed. The first model describes the HID lamp’s small-signal electrical behaviour and its purpose is to aid to study the interaction stability. The second HID lamp model has been developed based on physics equations for the arc column and the electrode behaviour, and is intended for lampdriver simulations and control applications. Verification measurements have shown that the lamp terminal characteristics are present over a wide power and frequency range. Three LDI control algorithms were explored, using the proposed lampmodels. The first control principle optimises the LDI for a broad range of HID lamps operated at normal or reduced power. This approach consists of two control loops integrated into a fuzzy-logic controller that stabilises the lamp-current and optimises the commutation process. The second control problem concerns the application of ultra high performance (UHP) HID lamps in projection applications that typically set stringent requirements on the quality of the light generated by these lamps, and therefore the lampcurrent. These systems are subject to periodic disturbances synchronous with the LFSW commutation period. Iterative learning control (ILC) has been examined. It was experimentally verified that this algorithm compensates for repetitive disturbances. Third, Electronic HID operation also opens the door for continuous HID lamp dimming that can provide additional savings. To enable stable dimming, an observer-based HID lamp controller has been developed. This controller sets a stable minimum dim-level and monitors the gas-discharge throughout lamp life. The HID lamp observer derives physical lamp state signals from the HID arc discharge physics and the related photometric properties. Finally, practical measurements proved the proposed HID lamp observer-based control principle works satisfactorily

    Iterative learning control of crystallisation systems

    Get PDF
    Under the increasing pressure of issues like reducing the time to market, managing lower production costs, and improving the flexibility of operation, batch process industries thrive towards the production of high value added commodity, i.e. specialty chemicals, pharmaceuticals, agricultural, and biotechnology enabled products. For better design, consistent operation and improved control of batch chemical processes one cannot ignore the sensing and computational blessings provided by modern sensors, computers, algorithms, and software. In addition, there is a growing demand for modelling and control tools based on process operating data. This study is focused on developing process operation data-based iterative learning control (ILC) strategies for batch processes, more specifically for batch crystallisation systems. In order to proceed, the research took a step backward to explore the existing control strategies, fundamentals, mechanisms, and various process analytical technology (PAT) tools used in batch crystallisation control. From the basics of the background study, an operating data-driven ILC approach was developed to improve the product quality from batch-to-batch. The concept of ILC is to exploit the repetitive nature of batch processes to automate recipe updating using process knowledge obtained from previous runs. The methodology stated here was based on the linear time varying (LTV) perturbation model in an ILC framework to provide a convergent batch-to-batch improvement of the process performance indicator. In an attempt to create uniqueness in the research, a novel hierarchical ILC (HILC) scheme was proposed for the systematic design of the supersaturation control (SSC) of a seeded batch cooling crystalliser. This model free control approach is implemented in a hierarchical structure by assigning data-driven supersaturation controller on the upper level and a simple temperature controller in the lower level. In order to familiarise with other data based control of crystallisation processes, the study rehearsed the existing direct nucleation control (DNC) approach. However, this part was more committed to perform a detailed strategic investigation of different possible structures of DNC and to compare the results with that of a first principle model based optimisation for the very first time. The DNC results in fact outperformed the model based optimisation approach and established an ultimate guideline to select the preferable DNC structure. Batch chemical processes are distributed as well as nonlinear in nature which need to be operated over a wide range of operating conditions and often near the boundary of the admissible region. As the linear lumped model predictive controllers (MPCs) often subject to severe performance limitations, there is a growing demand of simple data driven nonlinear control strategy to control batch crystallisers that will consider the spatio-temporal aspects. In this study, an operating data-driven polynomial chaos expansion (PCE) based nonlinear surrogate modelling and optimisation strategy was presented for batch crystallisation processes. Model validation and optimisation results confirmed this approach as a promise to nonlinear control. The evaluations of the proposed data based methodologies were carried out by simulation case studies, laboratory experiments and industrial pilot plant experiments. For all the simulation case studies a detailed mathematical models covering reaction kinetics and heat mass balances were developed for a batch cooling crystallisation system of Paracetamol in water. Based on these models, rigorous simulation programs were developed in MATLAB®, which was then treated as the real batch cooling crystallisation system. The laboratory experimental works were carried out using a lab scale system of Paracetamol and iso-Propyl alcohol (IPA). All the experimental works including the qualitative and quantitative monitoring of the crystallisation experiments and products demonstrated an inclusive application of various in situ process analytical technology (PAT) tools, such as focused beam reflectance measurement (FBRM), UV/Vis spectroscopy and particle vision measurement (PVM) as well. The industrial pilot scale study was carried out in GlaxoSmithKline Bangladesh Limited, Bangladesh, and the system of experiments was Paracetamol and other powdered excipients used to make paracetamol tablets. The methodologies presented in this thesis provide a comprehensive framework for data-based dynamic optimisation and control of crystallisation processes. All the simulation and experimental evaluations of the proposed approaches emphasised the potential of the data-driven techniques to provide considerable advances in the current state-of-the-art in crystallisation control

    Novel Front-end Electronics for Time Projection Chamber Detectors

    Full text link
    Este trabajo ha sido realizado en la Organización Europea para la Investigación Nuclear (CERN) y forma parte del proyecto de investigación Europeo para futuros aceleradores lineales (EUDET). En física de partículas existen diferentes categorías de detectores de partículas. El diseño presentado esta centrado en un tipo particular de detector de trayectoria de partículas denominado TPC (Time Projection Chamber) que proporciona una imagen en tres dimensiones de las partículas eléctricamente cargadas que atraviesan su volumen gaseoso. La tesis incluye un estudio de los objetivos para futuros detectores, resumiendo los parámetros que un sistema de adquisición de datos debe cumplir en esos casos. Además, estos requisitos son comparados con los actuales sistemas de lectura utilizados en diferentes detectores TPC. Se concluye que ninguno de los sistemas cumple las restrictivas condiciones. Algunos de los principales objetivos para futuros detectores TPC son un altísimo nivel de integración, incremento del número de canales, electrónica más rápida y muy baja potencia. El principal inconveniente del estado del arte de los sistemas anteriores es la utilización de varios circuitos integrados en la cadena de adquisición. Este hecho hace imposible alcanzar el altísimo nivel de integración requerido para futuros detectores. Además, un aumento del número de canales y frecuencia de muestreo haría incrementar hasta valores no permitidos la potencia utilizada. Y en consecuencia, incrementar la refrigeración necesaria (en caso de ser posible). Una de las novedades presentadas es la integración de toda la cadena de adquisición (filtros analógicos de entrada, conversor analógico-digital (ADC) y procesado de señal digital) en un único circuito integrado en tecnología de 130nm. Este chip es el primero que realiza esta altísima integración para detectores TPC. Por otro lado, se presenta un análisis detallado de los filtros de procesado de señal. Los objetivos más importantes es la reduccióGarcía García, EJ. (2012). Novel Front-end Electronics for Time Projection Chamber Detectors [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/16980Palanci

    Iterative learning control: algorithm development and experimental benchmarking

    No full text
    This thesis concerns the general area of experimental benchmarking of Iterative Learning Control (ILC) algorithms using two experimental facilities. ILC is an approach which is suitable for applications where the same task is executed repeatedly over the necessarily finite time duration, known as the trial length. The process is reset prior to the commencement of each execution. The basic idea of ILC is to use information from previously executed trials to update the control input to be applied during the next one. The first experimental facility is a non-minimum phase electro-mechanical system and the other is a gantry robot whose basic task is to pick and place objects on a moving conveyor under synchronization and in a fixed finite time duration that replicates many tasks encountered in the process industries. Novel contributions are made in both the development of new algorithms and, especially, in the analysis of experimental results both of a single algorithm alone and also in the comparison of the relative performance of different algorithms. In the case of non-minimum phase systems, a new algorithm, named Reference Shift ILC (RSILC) is developed that is of a two loop structure. One learning loop addresses the system lag and another tackles the possibility of a large initial plant input commonly encountered when using basic iterative learning control algorithms. After basic algorithm development and simulation studies, experimental results are given to conclude that performance improvement over previously reported algorithms is reasonable. The gantry robot has been previously used to experimentally benchmark a range of simple structure ILC algorithms, such as those based on the ILC versions of the classical proportional plus derivative error actuated controllers, and some state-space based optimal ILC algorithms. Here these results are extended by the first ever detailed experimental study of the performance of stochastic ILC algorithms together with some modifications necessary to their configuration in order to increase performance. The majority of the currently reported ILC algorithms mainly focus on reducing the trial-to-trial error but it is known that this may come at the cost of poor or unacceptable performance along the trial dynamics. Control theory for discrete linear repetitive processes is used to design ILC control laws that enable the control of both trial-to-trial error convergence and along the trial dynamics. These algorithms can be computed using Linear Matrix Inequalities (LMIs) and again the results of experimental implementation on the gantry robot are given. These results are the first ever in this key area and represent a benchmark against which alternatives can be compared. In the concluding chapter, a critical overview of the results presented is given together with areas for both short and medium term further researc

    The International Large Detector: Letter of Intent

    Get PDF
    163 pages, 91 figuresThe International Large Detector (ILD) is a concept for a detector at the International Linear Collider, ILC. The ILC will collide electrons and positrons at energies of initially 500 GeV, upgradeable to 1 TeV. The ILC has an ambitious physics program, which will extend and complement that of the Large Hadron Collider (LHC). A hallmark of physics at the ILC is precision. The clean initial state and the comparatively benign environment of a lepton collider are ideally suited to high precision measurements. To take full advantage of the physics potential of ILC places great demands on the detector performance. The design of ILD is driven by these requirements. Excellent calorimetry and tracking are combined to obtain the best possible overall event reconstruction, including the capability to reconstruct individual particles within jets for particle ow calorimetry. This requires excellent spatial resolution for all detector systems. A highly granular calorimeter system is combined with a central tracker which stresses redundancy and efficiency. In addition, efficient reconstruction of secondary vertices and excellent momentum resolution for charged particles are essential for an ILC detector. The interaction region of the ILC is designed to host two detectors, which can be moved into the beam position with a push-pull scheme. The mechanical design of ILD and the overall integration of subdetectors takes these operational conditions into account

    The CLIC Programme: Towards a Staged e+e- Linear Collider Exploring the Terascale : CLIC Conceptual Design Report

    Full text link
    This report describes the exploration of fundamental questions in particle physics at the energy frontier with a future TeV-scale e+e- linear collider based on the Compact Linear Collider (CLIC) two-beam acceleration technology. A high-luminosity high-energy e+e- collider allows for the exploration of Standard Model physics, such as precise measurements of the Higgs, top and gauge sectors, as well as for a multitude of searches for New Physics, either through direct discovery or indirectly, via high-precision observables. Given the current state of knowledge, following the observation of a 125 GeV Higgs-like particle at the LHC, and pending further LHC results at 8 TeV and 14 TeV, a linear e+e- collider built and operated in centre-of-mass energy stages from a few-hundred GeV up to a few TeV will be an ideal physics exploration tool, complementing the LHC. In this document, an overview of the physics potential of CLIC is given. Two example scenarios are presented for a CLIC accelerator built in three main stages of 500 GeV, 1.4 (1.5) TeV, and 3 TeV, together with operating schemes that will make full use of the machine capacity to explore the physics. The accelerator design, construction, and performance are presented, as well as the layout and performance of the experiments. The proposed staging example is accompanied by cost estimates of the accelerator and detectors and by estimates of operating parameters, such as power consumption. The resulting physics potential and measurement precisions are illustrated through detector simulations under realistic beam conditions.Comment: 84 pages, published as CERN Yellow Report https://cdsweb.cern.ch/record/147522
    corecore