24 research outputs found

    Développement des techniques de test et de diagnostic pour les FPGA hiérarchique de type mesh

    Get PDF
    The evolution trend of shrinking feature size and increasing complexity in modern electronics is being slowed down due to physical limits that generate numerous imperfections and defects during fabrication steps or projected life time of the chip. Field Programmable Gate Arrays (FPGAs) are used in complex digital systems mainly due to their reconfigurability and shorter time-to-market. To maintain a high reliability of such systems, FPGAs should be tested thoroughly for defects. FPGA architecture optimization for area saving and better signal routability is an ongoing process which directly impacts the overall FPGA testability, hence the reliability. This thesis presents a complete strategy for test and diagnosis of manufacturing defects in mesh-based FPGAs containing a novel multilevel interconnects topology which promises to provide better area and routability. Efficiency of the proposed test schemes is analyzed in terms of test cost, respective fault coverage and diagnostic resolution.L’évolution tendant à réduire la taille et augmenter la complexité des circuits électroniques modernes, est en train de ralentir du fait des limitations technologiques, qui génèrent beaucoup de d’imperfections et de defaults durant la fabrication ou la durée de vie de la puce. Les FPGAs sont utilisés dans les systèmes numériques complexes, essentiellement parce qu’ils sont reconfigurables et rapide à commercialiser. Pour garder une grande fiabilité de tels systèmes, les FPGAs doivent être testés minutieusement pour les defaults. L’optimisation de l’architecture des FPGAs pour l’économie de surface et une meilleure routabilité est un processus continue qui impacte directement la testabilité globale et de ce fait, la fiabilité. Cette thèse présente une stratégie complète pour le test et le diagnostique des defaults de fabrication des “mesh-based FPGA” contenant une nouvelle topologie d’interconnections à plusieurs niveaux, ce qui promet d’apporter une meilleure routabilité. Efficacité des schémas proposes est analysée en termes de temps de test, couverture de faute et résolution de diagnostique

    Radiation Mitigation and Power Optimization Design Tools for Reconfigurable Hardware in Orbit

    Get PDF
    The Reconfigurable Hardware in Orbit (RHinO)project is focused on creating a set of design tools that facilitate and automate design techniques for reconfigurable computing in space, using SRAM-based field-programmable-gate-array (FPGA) technology. In the second year of the project, design tools that leverage an established FPGA design environment have been created to visualize and analyze an FPGA circuit for radiation weaknesses and power inefficiencies. For radiation, a single event Upset (SEU) emulator, persistence analysis tool, and a half-latch removal tool for Xilinx/Virtex-II devices have been created. Research is underway on a persistence mitigation tool and multiple bit upsets (MBU) studies. For power, synthesis level dynamic power visualization and analysis tools have been completed. Power optimization tools are under development and preliminary test results are positive

    MFPA: Mixed-Signal Field Programmable Array for Energy-Aware Compressive Signal Processing

    Get PDF
    Compressive Sensing (CS) is a signal processing technique which reduces the number of samples taken per frame to decrease energy, storage, and data transmission overheads, as well as reducing time taken for data acquisition in time-critical applications. The tradeoff in such an approach is increased complexity of signal reconstruction. While several algorithms have been developed for CS signal reconstruction, hardware implementation of these algorithms is still an area of active research. Prior work has sought to utilize parallelism available in reconstruction algorithms to minimize hardware overheads; however, such approaches are limited by the underlying limitations in CMOS technology. Herein, the MFPA (Mixed-signal Field Programmable Array) approach is presented as a hybrid spin-CMOS reconfigurable fabric specifically designed for implementation of CS data sampling and signal reconstruction. The resulting fabric consists of 1) slice-organized analog blocks providing amplifiers, transistors, capacitors, and Magnetic Tunnel Junctions (MTJs) which are configurable to achieving square/square root operations required for calculating vector norms, 2) digital functional blocks which feature 6-input clockless lookup tables for computation of matrix inverse, and 3) an MRAM-based nonvolatile crossbar array for carrying out low-energy matrix-vector multiplication operations. The various functional blocks are connected via a global interconnect and spin-based analog-to-digital converters. Simulation results demonstrate significant energy and area benefits compared to equivalent CMOS digital implementations for each of the functional blocks used: this includes an 80% reduction in energy and 97% reduction in transistor count for the nonvolatile crossbar array, 80% standby power reduction and 25% reduced area footprint for the clockless lookup tables, and roughly 97% reduction in transistor count for a multiplier built using components from the analog blocks. Moreover, the proposed fabric yields 77% energy reduction compared to CMOS when used to implement CS reconstruction, in addition to latency improvements

    Single event upset hardened embedded domain specific reconfigurable architecture

    Get PDF

    Dynamic Scheduling, Allocation, and Compaction Scheme for Real-Time Tasks on FPGAs

    Get PDF
    Run-time reconfiguration (RTR) is a method of computing on reconfigurable logic, typically FPGAs, changing hardware configurations from phase to phase of a computation at run-time. Recent research has expanded from a focus on a single application at a time to encompass a view of the reconfigurable logic as a resource shared among multiple applications or users. In real-time system design, task deadlines play an important role. Real-time multi-tasking systems not only need to support sharing of the resources in space, but also need to guarantee execution of the tasks. At the operating system level, sharing logic gates, wires, and I/O pins among multiple tasks needs to be managed. From the high level standpoint, access to the resources needs to be scheduled according to task deadlines. This thesis describes a task allocator for scheduling, placing, and compacting tasks on a shared FPGA under real-time constraints. Our consideration of task deadlines is novel in the setting of handling multiple simultaneous tasks in RTR. Software simulations have been conducted to evaluate the performance of the proposed scheme. The results indicate significant improvement by decreasing the number of tasks rejected

    Towards Energy-Efficient and Reliable Computing: From Highly-Scaled CMOS Devices to Resistive Memories

    Get PDF
    The continuous increase in transistor density based on Moore\u27s Law has led us to highly scaled Complementary Metal-Oxide Semiconductor (CMOS) technologies. These transistor-based process technologies offer improved density as well as a reduction in nominal supply voltage. An analysis regarding different aspects of 45nm and 15nm technologies, such as power consumption and cell area to compare these two technologies is proposed on an IEEE 754 Single Precision Floating-Point Unit implementation. Based on the results, using the 15nm technology offers 4-times less energy and 3-fold smaller footprint. New challenges also arise, such as relative proportion of leakage power in standby mode that can be addressed by post-CMOS technologies. Spin-Transfer Torque Random Access Memory (STT-MRAM) has been explored as a post-CMOS technology for embedded and data storage applications seeking non-volatility, near-zero standby energy, and high density. Towards attaining these objectives for practical implementations, various techniques to mitigate the specific reliability challenges associated with STT-MRAM elements are surveyed, classified, and assessed herein. Cost and suitability metrics assessed include the area of nanomagmetic and CMOS components per bit, access time and complexity, Sense Margin (SM), and energy or power consumption costs versus resiliency benefits. In an attempt to further improve the Process Variation (PV) immunity of the Sense Amplifiers (SAs), a new SA has been introduced called Adaptive Sense Amplifier (ASA). ASA can benefit from low Bit Error Rate (BER) and low Energy Delay Product (EDP) by combining the properties of two of the commonly used SAs, Pre-Charge Sense Amplifier (PCSA) and Separated Pre-Charge Sense Amplifier (SPCSA). ASA can operate in either PCSA or SPCSA mode based on the requirements of the circuit such as energy efficiency or reliability. Then, ASA is utilized to propose a novel approach to actually leverage the PV in Non-Volatile Memory (NVM) arrays using Self-Organized Sub-bank (SOS) design. SOS engages the preferred SA alternative based on the intrinsic as-built behavior of the resistive sensing timing margin to reduce the latency and power consumption while maintaining acceptable access time

    Optimizing Dynamic Logic Realizations For Partial Reconfiguration Of Field Programmable Gate Arrays

    Get PDF
    Many digital logic applications can take advantage of the reconfiguration capability of Field Programmable Gate Arrays (FPGAs) to dynamically patch design flaws, recover from faults, or time-multiplex between functions. Partial reconfiguration is the process by which a user modifies one or more modules residing on the FPGA device independently of the others. Partial Reconfiguration reduces the granularity of reconfiguration to be a set of columns or rectangular region of the device. Decreasing the granularity of reconfiguration results in reduced configuration filesizes and, thus, reduced configuration times. When compared to one bitstream of a non-partial reconfiguration implementation, smaller modules resulting in smaller bitstream filesizes allow an FPGA to implement many more hardware configurations with greater speed under similar storage requirements. To realize the benefits of partial reconfiguration in a wider range of applications, this thesis begins with a survey of FPGA fault-handling methods, which are compared using performance-based metrics. Performance analysis of the Genetic Algorithm (GA) Offline Recovery method is investigated and candidate solutions provided by the GA are partitioned by age to improve its efficiency. Parameters of this aging technique are optimized to increase the occurrence rate of complete repairs. Continuing the discussion of partial reconfiguration, the thesis develops a case-study application that implements one partial reconfiguration module to demonstrate the functionality and benefits of time multiplexing and reveal the improved efficiencies of the latest large-capacity FPGA architectures. The number of active partial reconfiguration modules implemented on a single FPGA device is increased from one to eight to implement a dynamic video-processing architecture for Discrete Cosine Transform and Motion Estimation functions to demonstrate a 55-fold reduction in bitstream storage requirements thus improving partial reconfiguration capability

    Characterization of Interconnection Delays in FPGAS Due to Single Event Upsets and Mitigation

    Get PDF
    RÉSUMÉ L’utilisation incessante de composants électroniques à géométrie toujours plus faible a engendré de nouveaux défis au fil des ans. Par exemple, des semi-conducteurs à mémoire et à microprocesseur plus avancés sont utilisés dans les systèmes avioniques qui présentent une susceptibilité importante aux phénomènes de rayonnement cosmique. L'une des principales implications des rayons cosmiques, observée principalement dans les satellites en orbite, est l'effet d'événements singuliers (SEE). Le rayonnement atmosphérique suscite plusieurs préoccupations concernant la sécurité et la fiabilité de l'équipement avionique, en particulier pour les systèmes qui impliquent des réseaux de portes programmables (FPGA). Les FPGA à base de cellules de mémoire statique (SRAM) présentent une solution attrayante pour mettre en oeuvre des systèmes complexes dans le domaine de l’avionique. Les expériences de rayonnement réalisées sur les FPGA ont dévoilé la vulnérabilité de ces dispositifs contre un type particulier de SEE, à savoir, les événements singuliers de changement d’état (SEU). Un SEU est considérée comme le changement de l'état d'un élément bistable (c'est-à-dire, un bit-flip) dû à l'effet d'un ion, d'un proton ou d’un neutron énergétique. Cet effet est non destructif et peut être corrigé en réécrivant la partie de la SRAM affectée. Les changements de délai (DC) potentiels dus aux SEU affectant la mémoire de configuration de routage ont été récemment confirmés. Un des objectifs de cette thèse consiste à caractériser plus précisément les DC dans les FPGA causés par les SEU. Les DC observés expérimentalement sont présentés et la modélisation au niveau circuit de ces DC est proposée. Les circuits impliqués dans la propagation du délai sont validés en effectuant une modélisation précise des blocs internes à l'intérieur du FPGA et en exécutant des simulations. Les résultats montrent l’origine des DC qui sont en accord avec les mesures expérimentales de délais. Les modèles proposés au niveau circuit sont, aux meilleures de notre connaissance, le premier travail qui confirme et explique les délais combinatoires dans les FPGA. La conception d'un circuit moniteur de délai pour la détection des DC a été faite dans la deuxième partie de cette thèse. Ce moniteur permet de détecter un changement de délai sur les sections critiques du circuit et de prévenir les pannes de synchronisation engendrées par les SEU sans utiliser la redondance modulaire triple (TMR).----------ABSTRACT The unrelenting demand for electronic components with ever diminishing feature size have emerged new challenges over the years. Among them, more advanced memory and microprocessor semiconductors are being used in avionic systems that exhibit a substantial susceptibility to cosmic radiation phenomena. One of the main implications of cosmic rays, which was primarily observed in orbiting satellites, is single-event effect (SEE). Atmospheric radiation causes several concerns regarding the safety and reliability of avionics equipment, particularly for systems that involve field programmable gate arrays (FPGA). SRAM-based FPGAs, as an attractive solution to implement systems in aeronautic sector, are very susceptible to SEEs in particular Single Event Upset (SEU). An SEU is considered as the change of the state of a bistable element (i.e., bit-flip) due to the effect of an energetic ion or proton. This effect is non-destructive and may be fixed by rewriting the affected part. Sensitivity evaluation of SRAM-based FPGAs to a physical impact such as potential delay changes (DC) has not been addressed thus far in the literature. DCs induced by SEU can affect the functionality of the logic circuits by disturbing the race condition on critical paths. The objective of this thesis is toward the characterization of DCs in SRAM-based FPGAs due to transient ionizing radiation. The DCs observed experimentally are presented and the circuit-level modeling of those DCs is proposed. Circuits involved in delay propagation are reverse-engineered by performing precise modeling of internal blocks inside the FPGA and executing simulations. The results show the root cause of DCs that are in good agreement with experimental delay measurements. The proposed circuit level models are, to the best of our knowledge, the first work on modeling of combinational delays in FPGAs.In addition, the design of a delay monitor circuit for DC detection is investigated in the second part of this thesis. This monitor allowed to show experimentally cumulative DCs on interconnects in FPGA. To this end, by avoiding the use of triple modular redundancy (TMR), a mitigation technique for DCs is proposed and the system downtime is minimized. A method is also proposed to decrease the clock frequency after DC detection without interrupting the process

    Design methodology addressing static/reconfigurable partitioning optimizing software defined radio (SDR) implementation through FPGA dynamic partial reconfiguration and rapid prototyping tools

    Get PDF
    The characteristics people request for communication devices become more and more demanding every day. And not only in those aspects dealing with communication speed, but also in such different characteristics as different communication standards compatibility, battery life, device size or price. Moreover, when this communication need is addressed by the industrial world, new characteristics such as reliability, robustness or time-to-market appear. In this context, Software Defined Radios (SDR) and evolutions such as Cognitive Radios or Intelligent Radios seem to be the technological answer that will satisfy all these requirements in a short and mid-term. Consequently, this PhD dissertation deals with the implementation of this type of communication system. Taking into account that there is no limitation neither in the implementation architecture nor in the target device, a novel framework for SDR implementation is proposed. This framework is made up of FPGAs, using dynamic partial reconfiguration, as target device and rapid prototyping tools as designing tool. Despite the benefits that this framework generates, there are also certain drawbacks that need to be analyzed and minimized to the extent possible. On this purpose, a SDR design methodology has been designed and tested. This methodology addresses the static/reconfigurable partitioning of the SDRs in order to optimize their implementation in the aforementioned framework. In order to verify the feasibility of both the design framework and the design methodology, several implementations have been carried out making use of them. A multi-standard modulator implementing WiFi, WiMAX and UMTS, a small-form-factor cognitive video transmission system and the implementation of several data coding functions over R3TOS, a hardware operating system developed by the University of Edinburgh, are these implementations.Las características que la gente exige a los dispositivos de comunicaciones son cada día más exigentes. Y no solo en los aspectos relacionados con la velocidad de comunicación, sino que también en diferentes características como la compatibilidad con diferentes estándares de comunicación, autonomía, tamaño o precio. Es más, cuando esta necesidad de comunicación se traslada al mundo industrial, aparecen nuevas características como fiabilidad, robustez o plazo de comercialización que también es necesario cubrir. En este contexto, las Radios Definidas por Software (SDR) y evoluciones como las Radios Cognitivas o Radios Inteligentes parecen la respuesta tecnológica que va a satisfacer estas necesidades a corto y medio plazo. Por ello, esta tesis doctoral aborda la implementación de este tipo de sistemas de comunicaciones. Teniendo en cuenta que no existe una limitación, ni en la arquitectura de implementación, ni en el tipo de dispositivo a usar, se propone un nuevo entrono de diseño formado por las FPGAs, haciendo uso de la reconfiguración parcial dinámica, y por las herramientas de prototipado rápido. A pesar de que este entorno de diseño ofrece varios beneficios, también genera algunos inconvenientes que es necesario analizar y minimizar en la medida de lo posible. Con este objetivo, se ha diseñado y verificado una metodología de diseño de SDRs. Esta metodología se encarga del particionado estático/reconfigurable de las SDRs para optimizar su implementación sobre el entrono de diseño antes comentado. Para verificar la viabilidad tanto del entorno, como de la metodología de diseño propuesta, se han realizado varias implementaciones que hacen uso de ambas cosas. Estas implementaciones son: un modulador multi-estándar que implementa WiFi, WiMAX y UMTS, un sistema cognitivo y compacto de transmisión de video y la implementación de varias funciones de codificación de datos sobre R3TOS, un sistema operativo hardware desarrollado por la Universidad de Edimburgo
    corecore