16 research outputs found

    Experimental and computational analysis of random cylinder packings with applications

    Get PDF
    Random cylinder packings are prevalent in chemical engineering applications and they can serve as prototype models of fibrous materials and/or other particulate materials. In this research, comprehensive studies on cylinder packings were carried out by computer simulations and by experiments. The computational studies made use of a collective rearrangement algorithm (based on a Monte Carlo technique) to generate different packing structures. 3D random packing limits were explored, and the packing structures were quantified by their positional ordering, orientational ordering, and the particle-particle contacts. Furthermore, the void space in the packings was expressed as a pore network, which retains topological and geometrical information. The significance of this approach is that any irregular continuous porous space can be approximated as a mathematically tractable pore network, thus allowing for efficient microscale flow simulation. Single-phase flow simulations were conducted, and the results were validated by calculating permeabilities. In the experimental part of the research, a series of densification experiments were conducted on equilateral cylinders. X-ray microtomography was used to image the cylinder packs, and the particle-scale packings were reconstructed from the digital data. This numerical approach makes it possible to study detailed packing structure, packing density, the onset of ordering, and wall effects. Orthogonal ordering and layered structures were found to exist at least two characteristic diameters from the wall in cylinder packings. Important applications for cylinder packings include multiphase flow in catalytic beds, heat transfer, bulk storage and transportation, and manufacturing of fibrous composites

    Dichteoptimierung und Strukturanalyse von Hartkugelpackungen

    Get PDF
    Bei der Verwendung von Hartkugelpackungen als Modelle für verschiedene Systeme in Physik, Chemie und den Ingenieurwissenschaften kommen einige Fragen auf, z.B. nach dem Zusammenhang zwischen der Packungsdichte und der Radienverteilung der Kugeln bzw. der Packungsstruktur. Der erste Teil dieser Arbeit beschäftigt sich mit dem Problem der optimalen Packungsdichte von zufällig dichten Packungen. Es wird ein Optimierungsalgorithmus vorgestellt, der aus einer vorgegebenen Klasse von Radienverteilungen diejenige bestimmt, für die die Packungsdichte maximal wird. Die Packungsstruktur kann man durch verschiedene statistische Größen charakterisieren, die im zweiten Teil dieser Arbeit beschrieben werden. Dabei wird die Abhängigkeit dieser Größen von der Packungsdichte und der Radienverteilung untersucht und gezeigt, dass in monodispersen Packungen mit zunehmender Dichte erhebliche strukturelle Veränderungen auftreten: Im Dichteintervall zwischen 0,64 und 0,66 erfolgt offenbar ein Übergang von ungeordneten zu kristallinen Packungen, bei weiterer Verdichtung entwickelt sich schließlich eine FCC-Struktur
    corecore