790 research outputs found

    A Survey on Scheduling in IEEE 802.16 Mesh Mode

    Get PDF
    Cataloged from PDF version of article.IEEE 802.16 standard (also known as WiMAX) defines the wireless broadband network technology which aims to solve the so called last mile problem via providing high bandwidth Internet even to the rural areas for which the cable deployment is very costly. The standard mainly focuses on the MAC and PHY layer issues, supporting two transmission modes: PMP (Point-to-Multipoint) and mesh modes. Mesh mode is an optional mode developed as an extension to PMP mode and it has the advantage of having an improving performance as more subscribers are added to the system using multi-hop routes. In 802.16 MAC protocol, mesh mode slot allocation and reservation mechanisms are left open which makes this topic a hot research area. Hence, the focus of this survey will mostly be on the mesh mode, and the proposed scheduling algorithms and performance evaluation methods

    Cross-layer design for single-cell OFDMA systems with heterogeneous QoS and partial CSIT

    Get PDF
    Abstract— This paper proposes a novel cross-layer scheduling scheme for a single-cell orthogonal frequency division multiple access (OFDMA) wireless system with partial channel state information (CSI) at transmitter (CSIT) and heterogeneous user delay requirements. Previous research efforts on OFDMA resource allocation are typically based on the availability of perfect CSI or imperfect CSI but with small error variance. Either case consists to typify a non tangible system as the potential facts of channel feedback delay or large channel estimation errors have not been considered. Thus, to attain a more realistic resolution our cross-layer design determines optimal subcarrier and power allocation policies based on partial CSIT and individual user’s quality of service (QoS) requirements. The simulation results show that the proposed cross-layer scheduler can maximize the system’s throughput and at the same time satisfy heterogeneous delay requirements of various users with significant low power consumption

    A Survey on Delay-Aware Resource Control for Wireless Systems --- Large Deviation Theory, Stochastic Lyapunov Drift and Distributed Stochastic Learning

    Full text link
    In this tutorial paper, a comprehensive survey is given on several major systematic approaches in dealing with delay-aware control problems, namely the equivalent rate constraint approach, the Lyapunov stability drift approach and the approximate Markov Decision Process (MDP) approach using stochastic learning. These approaches essentially embrace most of the existing literature regarding delay-aware resource control in wireless systems. They have their relative pros and cons in terms of performance, complexity and implementation issues. For each of the approaches, the problem setup, the general solution and the design methodology are discussed. Applications of these approaches to delay-aware resource allocation are illustrated with examples in single-hop wireless networks. Furthermore, recent results regarding delay-aware multi-hop routing designs in general multi-hop networks are elaborated. Finally, the delay performance of the various approaches are compared through simulations using an example of the uplink OFDMA systems.Comment: 58 pages, 8 figures; IEEE Transactions on Information Theory, 201

    Channel Aware Uplink Scheduler for a Mobile Subscriber Station of IEEE 802.16e

    Get PDF
    The scheduling part of the IEEE 802.16 (WiMAX) standards is kept as an open issue to provide differentiation among equipment manufacturers and operators. The uplink scheduling is very significant and more complex compared to downlink scheduling. Uplink scheduling is divided into two parts; one is scheduling the resources among many users from a base station (BS) and the other is sharing the resources among its services in a single user. BS uplink scheduling has been given more attention compared to subscriber station (SS) uplink scheduling. SS scheduler plays a significant role in providing the quality of service (QoS) among its services. The channel status awareness is vital in designing the SS scheduler as the channel conditions vary for a mobile user. This work proposes a scheduling algorithm for SS, which utilizes the channel information and queue length variation for the reallocation of received aggregated bandwidth grant to optimize the QoS parameters. The performance of the proposed algorithm is studied by conducting simulations using QualNet 5.0.2 simulation tool. Simulation results demonstrate the effectiveness of the proposed algorithm to improve the QoS

    Scheduling for Multi-Camera Surveillance in LTE Networks

    Full text link
    Wireless surveillance in cellular networks has become increasingly important, while commercial LTE surveillance cameras are also available nowadays. Nevertheless, most scheduling algorithms in the literature are throughput, fairness, or profit-based approaches, which are not suitable for wireless surveillance. In this paper, therefore, we explore the resource allocation problem for a multi-camera surveillance system in 3GPP Long Term Evolution (LTE) uplink (UL) networks. We minimize the number of allocated resource blocks (RBs) while guaranteeing the coverage requirement for surveillance systems in LTE UL networks. Specifically, we formulate the Camera Set Resource Allocation Problem (CSRAP) and prove that the problem is NP-Hard. We then propose an Integer Linear Programming formulation for general cases to find the optimal solution. Moreover, we present a baseline algorithm and devise an approximation algorithm to solve the problem. Simulation results based on a real surveillance map and synthetic datasets manifest that the number of allocated RBs can be effectively reduced compared to the existing approach for LTE networks.Comment: 9 pages, 10 figure

    Cross-Layer Capacity Optimization In OFDMA Systems: WiMAX And LTE

    Get PDF
    Given the broad range of applications supported, high data rate required and low latency promised; dynamic radio resource management is becoming vital for newly emerging air interface technologies such as wireless interoperability for microwave access (Wimax) and long term evolution (lte) adopted by international standards. This thesis considers orthogonal frequency division multiple access (ofdma) system, which has been implemented in both Wimax and lte technologies as their air interface multiple access mechanism. A framework for optimized resource allocation with quality of service (qos) support that aims to balance between service provider\u27s revenue and subscriber\u27s satisfaction is proposed. A cross-layer optimization design for subchannel, for Wimax, and physical resource block (prb), for lte, and power allocations with the objective of maximizing the capacity (in bits/symbol/hz) subject to fairness parameters and qos requirements as constraints is presented. An adaptive modulation and coding (amc)-based cross-layer scheme has also been proposed in this thesis by adopting an amc scheme together with the cross-layer scheme to realize a more practical and viable resource allocation. The optimization does not only consider users channel conditions but also queue status of each user as well as different qos requirements. In the proposed framework, the problem of power allocation is solved analytically while the subchannel/prb allocation is solved using integer programming exhaustive search. The simulation and numerical results obtained in this thesis have shown improved system performance as compared to other optimization schemes known in literature

    Simulation and Emulation Approach for the Performance Evaluation of Adaptive Modulation and Coding Scheme in Mobile WiMAX Network

    Get PDF
    WiMAX is the IEEE 802.16e standard-based wireless technology, provides Broadband Wireless Access (BWA) for Metropolitan Area Networks (MAN). Being the wireless channels are precious and limited, adapting the appropriate modulation and coding scheme (MCS) for the state of the radio channel leads to an optimal average data rate. The standard supports adaptive modulation and coding (AMC) on the basis of signal to interference noise ratio (SINR) condition of the radio link. This paper made an attempt to study the performance of AMC scheme in Mobile WiMAX network using simulation and emulation methods. Different MCS are adopted by mobile subscriber station (MSS) on the basis of the detected instantaneous SINR. Simulation results demonstrate the impact of modulation and coding scheme on the performance of the system and emulation results defend the simulation results
    • 

    corecore