246 research outputs found

    A Novel Optimization Algorithm for Notch Bandwidth in Lattice Based Adaptive Filter for the Tracking of Interference in GPS

    Get PDF
    The weak signal levels experienced at the reception of the messages transmitted by navigation satellites, makes Global Positioning System (GPS) vulnerable to unintentional and intentional interference. This calls for appropriate modelling of GPS signal sources and jammers to assess the anti-jamming and interference mitigation capabilities of algorithms developed to be implemented for GPS receivers. Using a practical simulation model, this work presents an anti-jamming technique based on a novel algorithm. A fully adaptive lattice based notch filter is presented that provides better performance when compared to existing adaptive notch filter based techniques, chosen from the literature, in terms of convergence speed whilst delivering superior performance in the excision of the interference signal. To justify the superiority of the proposed technique, the noise and interference signal power is varied for in a wide dynamic range assessing jamming-to-noise density versus effective carrier-to-noise density performance at the output of the correlator

    A review of RFI mitigation techniques in microwave radiometry

    Get PDF
    Radio frequency interference (RFI) is a well-known problem in microwave radiometry (MWR). Any undesired signal overlapping the MWR protected frequency bands introduces a bias in the measurements, which can corrupt the retrieved geophysical parameters. This paper presents a literature review of RFI detection and mitigation techniques for microwave radiometry from space. The reviewed techniques are divided between real aperture and aperture synthesis. A discussion and assessment of the application of RFI mitigation techniques is presented for each type of radiometer.Peer ReviewedPostprint (published version

    다중 기준국 기반의 위성항법시스템 기만신호 검출 및 위치추정 기법

    Get PDF
    학위논문 (석사)-- 서울대학교 대학원 : 기계항공공학부, 2015. 2. 박찬국.위성항법시스템은 인공위성을 이용하는 전파항법시스템으로 사용자의 위치 및 시각을 정밀하게 측정할 수 있어 국방뿐 아니라 다양한 민수분야에서 광범위하게 활용되고 있다. 그러나 약 2만킬로미터 상공으로부터 수신기에 도달하는 위성항법신호의 세기는 잡음 레벨 이하이므로 전파교란신호에 취약하다는 단점이 있다. 전파교란신호는 크게 자연적인 전파교란신호와 인위적인 전파교란신호로 구분할 수 있는데, 그 중에서 인위적인 전파교란신호는 특정 목적에 의해서 시스템에 악영향을 주므로 이에 대응하는 연구가 필요하다. 인위적인 전파교란신호는 재밍, 미코닝, 기만신호로 나눌 수 있고 이중에서 기만신호는 실제 위성항법신호를 그대로 모사하여 수신기를 기만시킨 후에 잘못된 항법해를 유발시키기 때문에 심각한 결과를 초래할 수 있다. 따라서 본 논문에서는 기만신호에 대한 대응기법으로 다중 기준국 기반에서 항법해 품질을 감시하기 위해 기만신호를 검출하고 위치를 추정하는 방법에 대한 연구를 진행하였다. 기만신호를 검출하는 방법은 검출 파라미터 및 기만 시나리오에 따라 다양한 방법들이 있으며 최근 몇 년 동안 연구가 활발히 진행되고 있다. 본 논문에서는 다양한 기만 시나리오를 포괄적으로 검출하기 위한 방법으로 이미 알고 있는 고정된 위치의 기준국 기반에서 적응 페이딩 칼만 필터의 페이딩 팩터를 검출 파라미터로 사용한 검출방법에 대해서 소개하였다. 이때 기만신호는 스마트 기만 시나리오를 모사하여 그 영향을 램프 바이어스 형태의 의사거리 오차로 모델링 하였다. 또한 이에 따른 페이딩 팩터 변화값을 정량적으로 분석하였고 분석결과를 바탕으로 기만신호 검출을 위한 임계치를 설정하였다. 이 방법은 최종적으로 페이딩 팩터로 칼만 게인을 조절함으로써 기만신호의 영향을 완화시키는 효과도 나타났다. 앞에서 설명한 기만신호 검출 방법을 이용하여 기만신호가 있다고 판단하면 다중 기준국에서의 측정치를 통해 기만신호원의 위치를 추정하게 된다. 전파간섭원의 위치를 추정하는 방법은 사용하는 측정치에 따라 다양하게 분류되는데 본 논문에서는 주기준국을 기준으로 하여 각 기준국에서 수신된 신호세기차이를 이용하여 위치를 추정하였으며, 이때 신호세기 측정치로 C/No를 사용하였고 시뮬레이션을 위해 전파손실모델은 COST231-Walfisch-Ikegami 모델을 사용하여 신호감쇄를 계산하였다. 본 논문에서 제안한 검출 및 위치추정 기법은 각각 간단한 시뮬레이션을 통해 성능을 분석하였다. 이러한 방법은 채널별 의사거리 이상을 검출할 수 있으므로 사용자의 위치가 고정된 경우 무결성 감시 알고리즘으로 사용이 가능할 것으로 기대된다. 또한 추가적인 하드웨어나 복잡한 알고리즘 구현이 필요하지 않아 실용적인 측면에서 유용할 것으로 기대된다.The Global Navigation Satellite System (GNSS) is a radio navigation system using satellites and has been widely used by both military and civilian systems since it can provide an accurate position and timing information to users. However, the strength of the GNSS signal on the users receiver is weak since GNSS satellites are approximately 20,000 Km away and transmit several watts of signal power such that at the ground level. Therefore, GNSS signal is quite vulnerable to different types of interference. Interference signals can be categorized as unintentional and intentional. Intentional interference, such as jamming, meaconing, and spoofing, are specifically designed with malicious intention to deny or mislead GNSS receivers, thus they are serious threat to GNSS applications. Among them, spoofing is much more dangerous since it is designed to mislead their target receiver that is not aware of the attack and this can lead to disastrous consequences in scores of applications. Therefore, in this thesis, a detection and localization method for GNSS spoofing signal based on multiple base stations has been researched for monitoring the quality of navigation solutions. There are various spoofing detection methods according to detection parameters and spoofing scenarios. The related researches have been actively performed for recent years. In this thesis, GNSS spoofing detection method based on adaptive fading Kalman filter is proposed to detect spoofing signal and the fading factor of the filter is used as a detection parameter. In order to detect spoofing signal regardless of spoofing scenarios, the proposed method is based on multiple base stations whose locations are fixed and already known. The effect of the spoofing is modeled by the ramp type bias error of the pseudorange to emulate smart spoofer. In addition, the change of the fading factor according to ramp type bias error is quantitatively analyzed and the detection threshold is established to detect spoofing signal by analyzing the change of the error covariance. The proposed method also has an effect on spoofing mitigation by adjusting the Kalman gain of the filter. If spoofing signal is detected by using the proposed method, spoofing localization method based on multiple base stations is performed to estimate spoofing location. There are various localization methods according to measurements. However, in this thesis, spoofing location is estimated by differential received signal strength (DRSS) method because of simplicity and efficiency. The carrier to noise ratio (C/No) measurement characterizes the received signal strength (RSS), therefore, the difference of the C/No between main station (MS) and each base station (BS) is used as measurement for DRSS method. In addition, the Cost231-Walfisch-Ikegami model is applied as path-loss model for calculating signal attenuation. To verify the performance analysis of the proposed spoofing detection and localization method, simple simulations are implemented, respectively. This method can be applied for integrity monitoring algorithm in case of fixed user because it can detect abnormal pseudorange of each channel. In addition, this method is expected to be easily applied to practical system because they do not need to additional hardware and realization of complex algorithm.Abstract i Contents iv List of Figures vi List of Tables vii Chapter 1.Introduction 1 1.1 Motivation and Background 1 1.2 Objectives and Contributions 2 1.3 Organization 2 Chapter 2. GNSS Intentional Interference 4 2.1 Introduction 4 2.2 Jamming 5 2.3 Meaconing 8 2.4 Spoofing 11 Chapter 3. Spoofing Detection Method 13 3.1 Introduction 13 3.2 Adaptive Fading Kalman Filter 15 3.2.1 Backgroud 15 3.2.2 Adaptive Fading Factor 17 3.2.3 Parameter Analysis 21 3.3 Simulation 25 Chapter 4. Spoofing Localization Method 34 4.1 Introduction 34 4.2 DRSS Method 35 4.3 Simulation 38 Chapter 5. Conclusions 43 Bibliography 45 국문초록 51Maste

    Ultra-Wideband Secure Communications and Direct RF Sampling Transceivers

    Get PDF
    Larger wireless device bandwidth results in new capabilities in terms of higher data rates and security. The 5G evolution is focus on exploiting larger bandwidths for higher though-puts. Interference and co-existence issues can also be addressed by the larger bandwidth in the 5G and 6G evolution. This dissertation introduces of a novel Ultra-wideband (UWB) Code Division Multiple Access (CDMA) technique to exploit the largest bandwidth available in the upcoming wireless connectivity scenarios. The dissertation addresses interference immunity, secure communication at the physical layer and longer distance communication due to increased receiver sensitivity. The dissertation presents the design, workflow, simulations, hardware prototypes and experimental measurements to demonstrate the benefits of wideband Code-Division-Multiple-Access. Specifically, a description of each of the hardware and software stages is presented along with simulations of different scenarios using a test-bench and open-field measurements. The measurements provided experimental validation carried out to demonstrate the interference mitigation capabilities. In addition, Direct RF sampling techniques are employed to handle the larger bandwidth and avoid analog components. Additionally, a transmit and receive chain is designed and implemented at 28 GHz to provide a proof-of-concept for future 5G applications. The proposed wideband transceiver is also used to demonstrate higher accuracy direction finding, as much as 10 times improvement

    Narrowband interference rejection studies for Galileo signals via Simulink

    Get PDF
    Four Global Navigation Satellite System (GNSS) are scheduled to be fully operational orbiting the Earth in the coming years. A considerably high number of signals, coming from each of the satellites that will constitute those constellations, will share the radio electric spectrum. Aeronautical Radio Navigation Systems (ARNS) share the E5 Galileo band. Examples of ARNS are Distance Measuring Equipment (DME) and Tactical Air Navigation system (TACAN). It should also be mentioned that electronic attacks (jamming or spoofing) have always been a latent threat for satellite services. All of this are important interference sources which can partially or completely disable a GNSS system. These interferences must be, and are currently being studied together with interference mitigation methods. The aim of the work presented in this thesis is to study the narrowband interference effects in Galileo E5 band and to assess three mitigation techniques against two types of narrowband interferences, Continuous Wave Interference (CWI) and DME signals. Cancellation techniques can be classified into two major groups: time-domain approaches and frequency-domain approaches. Methods that combine time and frequency together are also given in the literature (e.g. cyclostationarity-based methods) but their implementations are very costly with high sampling rates as those used for example in Galileo E5 signals. The mitigation techniques that are addressed in this thesis are zeroing, dynamic notch filtering and blanking pulse methods. All of them can be understood as filtering techniques that remove any signal above a certain threshold. This thesis shows that zeroing is more suitable for CWI and blanking is better against DME signals. These techniques have been developed within a Matlab-Simulink based simulator initiated in 2007 at Tampere University of Technology. The implemented simulator could be a great help tool for future research and development projects

    A scalable real-time processing chain for radar exploiting illuminators of opportunity

    Get PDF
    Includes bibliographical references.This thesis details the design of a processing chain and system software for a commensal radar system, that is, a radar that makes use of illuminators of opportunity to provide the transmitted waveform. The stages of data acquisition from receiver back-end, direct path interference and clutter suppression, range/Doppler processing and target detection are described and targeted to general purpose commercial off-the-shelf computing hardware. A detailed low level design of such a processing chain for commensal radar which includes both processing stages and processing stage interactions has, to date, not been presented in the Literature. Furthermore, a novel deployment configuration for a networked multi-site FM broadcast band commensal radar system is presented in which the reference and surveillance channels are record at separate locations

    GNSS array-based acquisition: theory and implementation

    Get PDF
    This Dissertation addresses the signal acquisition problem using antenna arrays in the general framework of Global Navigation Satellite Systems (GNSS) receivers. The term GNSS classi es those navigation systems based on a constellation of satellites, which emit ranging signals useful for positioning. Although the American GPS is already available, which coexists with the renewed Russian Glonass, the forthcoming European contribution (Galileo) along with the Chinese Compass will be operative soon. Therefore, a variety of satellite constellations and signals will be available in the next years. GNSSs provide the necessary infrastructures for a myriad of applications and services that demand a robust and accurate positioning service. The positioning availability must be guaranteed all the time, specially in safety-critical and mission-critical services. Examining the threats against the service availability, it is important to take into account that all the present and the forthcoming GNSSs make use of Code Division Multiple Access (CDMA) techniques. The ranging signals are received with very low precorrelation signal-to-noise ratio (in the order of ���22 dB for a receiver operating at the Earth surface). Despite that the GNSS CDMA processing gain o ers limited protection against Radio Frequency interferences (RFI), an interference with a interference-to-signal power ratio that exceeds the processing gain can easily degrade receivers' performance or even deny completely the GNSS service, specially conventional receivers equipped with minimal or basic level of protection towards RFIs. As a consequence, RFIs (either intentional or unintentional) remain as the most important cause of performance degradation. A growing concern of this problem has appeared in recent times. Focusing our attention on the GNSS receiver, it is known that signal acquisition has the lowest sensitivity of the whole receiver operation, and, consequently, it becomes the performance bottleneck in the presence of interfering signals. A single-antenna receiver can make use of time and frequency diversity to mitigate interferences, even though the performance of these techniques is compromised in low SNR scenarios or in the presence of wideband interferences. On the other hand, antenna arrays receivers can bene t from spatial-domain processing, and thus mitigate the e ects of interfering signals. Spatial diversity has been traditionally applied to the signal tracking operation of GNSS receivers. However, initial tracking conditions depend on signal acquisition, and there are a number of scenarios in which the acquisition process can fail as stated before. Surprisingly, to the best of our knowledge, the application of antenna arrays to GNSS signal acquisition has not received much attention. This Thesis pursues a twofold objective: on the one hand, it proposes novel arraybased acquisition algorithms using a well-established statistical detection theory framework, and on the other hand demonstrates both their real-time implementation feasibility and their performance in realistic scenarios. The Dissertation starts with a brief introduction to GNSS receivers fundamentals, providing some details about the navigation signals structure and the receiver's architecture of both GPS and Galileo systems. It follows with an analysis of GNSS signal acquisition as a detection problem, using the Neyman-Pearson (NP) detection theory framework and the single-antenna acquisition signal model. The NP approach is used here to derive both the optimum detector (known as clairvoyant detector ) and the sov called Generalized Likelihood Ratio Test (GLRT) detector, which is the basis of almost all of the current state-of-the-art acquisition algorithms. Going further, a novel detector test statistic intended to jointly acquire a set of GNSS satellites is obtained, thus reducing both the acquisition time and the required computational resources. The eff ects of the front-end bandwidth in the acquisition are also taken into account. Then, the GLRT is extended to the array signal model to obtain an original detector which is able to mitigate temporally uncorrelated interferences even if the array is unstructured and moderately uncalibrated, thus becoming one of the main contributions of this Dissertation. The key statistical feature is the assumption of an arbitrary and unknown covariance noise matrix, which attempts to capture the statistical behavior of the interferences and other non-desirable signals, while exploiting the spatial dimension provided by antenna arrays. Closed form expressions for the detection and false alarm probabilities are provided. Performance and interference rejection capability are modeled and compared both to their theoretical bound. The proposed array-based acquisition algorithm is also compared to conventional acquisition techniques performed after blind null-steering beamformer approaches, such as the power minimization algorithm. Furthermore, the detector is analyzed under realistic conditions, accounting for the presence of errors in the covariance matrix estimation, residual Doppler and delay errors, and signal quantization e ects. Theoretical results are supported by Monte Carlo simulations. As another main contribution of this Dissertation, the second part of the work deals with the design and the implementation of a novel Field Programmable Gate Array (FPGA)-based GNSS real-time antenna-array receiver platform. The platform is intended to be used as a research tool tightly coupled with software de ned GNSS receivers. A complete signal reception chain including the antenna array and the multichannel phase-coherent RF front-end for the GPS L1/ Galileo E1 was designed, implemented and tested. The details of the digital processing section of the platform, such as the array signal statistics extraction modules, are also provided. The design trade-o s and the implementation complexities were carefully analyzed and taken into account. As a proof-of-concept, the problem of GNSS vulnerability to interferences was addressed using the presented platform. The array-based acquisition algorithms introduced in this Dissertation were implemented and tested under realistic conditions. The performance of the algorithms were compared to single antenna acquisition techniques, measured under strong in-band interference scenarios, including narrow/wide band interferers and communication signals. The platform was designed to demonstrate the implementation feasibility of novel array-based acquisition algorithms, leaving the rest of the receiver operations (mainly, tracking, navigation message decoding, code and phase observables, and basic Position, Velocity and Time (PVT) solution) to a Software De ned Radio (SDR) receiver running in a personal computer, processing in real-time the spatially- ltered signal sample stream coming from the platform using a Gigabit Ethernet bus data link. In the last part of this Dissertation, we close the loop by designing and implementing such software receiver. The proposed software receiver targets multi-constellation/multi-frequency architectures, pursuing the goals of e ciency, modularity, interoperability, and exibility demanded by user domains that require non-standard features, such as intermediate signals or data extraction and algorithms interchangeability. In this context, we introduce an open-source, real-time GNSS software de ned receiver (so-named GNSS-SDR) that contributes with several novel features such as the use of software design patterns and shared memory techniques to manage e ciently the data ow between receiver blocks, the use of hardware-accelerated instructions for time-consuming vector operations like carrier wipe-o and code correlation, and the availability to compile and run on multiple software platforms and hardware architectures. At this time of writing (April 2012), the receiver enjoys of a 2-dimensional Distance Root Mean Square (DRMS) error lower than 2 meters for a GPS L1 C/A scenario with 8 satellites in lock and a Horizontal Dilution Of Precision (HDOP) of 1.2.Esta tesis aborda el problema de la adquisición de la señal usando arrays de antenas en el marco general de los receptores de Sistemas Globales de Navegación por Satélite (GNSS). El término GNSS engloba aquellos sistemas de navegación basados en una constelación de satélites que emiten señales útiles para el posicionamiento. Aunque el GPS americano ya está disponible, coexistiendo con el renovado sistema ruso GLONASS, actualmente se está realizando un gran esfuerzo para que la contribución europea (Galileo), junto con el nuevo sistema chino Compass, estén operativos en breve. Por lo tanto, una gran variedad de constelaciones de satélites y señales estarán disponibles en los próximos años. Estos sistemas proporcionan las infraestructuras necesarias para una multitud de aplicaciones y servicios que demandan un servicio de posicionamiento confiable y preciso. La disponibilidad de posicionamiento se debe garantizar en todo momento, especialmente en los servicios críticos para la seguridad de las personas y los bienes. Cuando examinamos las amenazas de la disponibilidad del servicio que ofrecen los GNSSs, es importante tener en cuenta que todos los sistemas presentes y los sistemas futuros ya planificados hacen uso de técnicas de multiplexación por división de código (CDMA). Las señales transmitidas por los satélites son recibidas con una relación señal-ruido (SNR) muy baja, medida antes de la correlación (del orden de -22 dB para un receptor ubicado en la superficie de la tierra). A pesar de que la ganancia de procesado CDMA ofrece una protección inherente contra las interferencias de radiofrecuencia (RFI), esta protección es limitada. Una interferencia con una relación de potencia de interferencia a potencia de la señal que excede la ganancia de procesado puede degradar el rendimiento de los receptores o incluso negar por completo el servicio GNSS. Este riesgo es especialmente importante en receptores convencionales equipados con un nivel mínimo o básico de protección frente las RFIs. Como consecuencia, las RFIs (ya sean intencionadas o no intencionadas), se identifican como la causa más importante de la degradación del rendimiento en GNSS. El problema esta causando una preocupación creciente en los últimos tiempos, ya que cada vez hay más servicios que dependen de los GNSSs Si centramos la atención en el receptor GNSS, es conocido que la adquisición de la señal tiene la menor sensibilidad de todas las operaciones del receptor, y, en consecuencia, se convierte en el factor limitador en la presencia de señales interferentes. Un receptor de una sola antena puede hacer uso de la diversidad en tiempo y frecuencia para mitigar las interferencias, aunque el rendimiento de estas técnicas se ve comprometido en escenarios con baja SNR o en presencia de interferencias de banda ancha. Por otro lado, los receptores basados en múltiples antenas se pueden beneficiar del procesado espacial, y por lo tanto mitigar los efectos de las señales interferentes. La diversidad espacial se ha aplicado tradicionalmente a la operación de tracking de la señal en receptores GNSS. Sin embargo, las condiciones iniciales del tracking dependen del resultado de la adquisición de la señal, y como hemos visto antes, hay un número de situaciones en las que el proceso de adquisición puede fallar. En base a nuestro grado de conocimiento, la aplicación de los arrays de antenas a la adquisición de la señal GNSS no ha recibido mucha atención, sorprendentemente. El objetivo de esta tesis doctoral es doble: por un lado, proponer nuevos algoritmos para la adquisición basados en arrays de antenas, usando como marco la teoría de la detección de señal estadística, y por otro lado, demostrar la viabilidad de su implementación y ejecución en tiempo real, así como su medir su rendimiento en escenarios realistas. La tesis comienza con una breve introducción a los fundamentos de los receptores GNSS, proporcionando algunos detalles sobre la estructura de las señales de navegación y la arquitectura del receptor aplicada a los sistemas GPS y Galileo. Continua con el análisis de la adquisición GNSS como un problema de detección, aplicando la teoría del detector Neyman-Pearson (NP) y el modelo de señal de una única antena. El marco teórico del detector NP se utiliza aquí para derivar tanto el detector óptimo (conocido como detector clarividente) como la denominada Prueba Generalizada de la Razón de Verosimilitud (en inglés, Generalized Likelihood Ratio Test (GLRT)), que forma la base de prácticamente todos los algoritmos de adquisición del estado del arte actual. Yendo más lejos, proponemos un nuevo detector diseñado para adquirir simultáneamente un conjunto de satélites, por lo tanto, obtiene una reducción del tiempo de adquisición y de los recursos computacionales necesarios en el proceso, respecto a las técnicas convencionales. El efecto del ancho de banda del receptor también se ha tenido en cuenta en los análisis. A continuación, el detector GLRT se extiende al modelo de señal de array de antenas para obtener un detector nuevo que es capaz de mitigar interferencias no correladas temporalmente, incluso utilizando arrays no estructurados y moderadamente descalibrados, convirtiéndose así en una de las principales aportaciones de esta tesis. La clave del detector es asumir una matriz de covarianza de ruido arbitraria y desconocida en el modelo de señal, que trata de captar el comportamiento estadístico de las interferencias y otras señales no deseadas, mientras que utiliza la dimensión espacial proporcionada por los arrays de antenas. Se han derivado las expresiones que modelan las probabilidades teóricas de detección y falsa alarma. El rendimiento del detector y su capacidad de rechazo a interferencias se han modelado y comparado con su límite teórico. El algoritmo propuesto también ha sido comparado con técnicas de adquisición convencionales, ejecutadas utilizando la salida de conformadores de haz que utilizan algoritmos de filtrado de interferencias, como el algoritmo de minimización de la potencia. Además, el detector se ha analizado bajo condiciones realistas, representadas con la presencia de errores en la estimación de covarianzas, errores residuales en la estimación del Doppler y el retardo de señal, y los efectos de la cuantificación. Los resultados teóricos se apoyan en simulaciones de Monte Carlo. Como otra contribución principal de esta tesis, la segunda parte del trabajo trata sobre el diseño y la implementación de una nueva plataforma para receptores GNSS en tiempo real basados en array de antenas que utiliza la tecnología de matriz programable de puertas lógicas (en ingles Field Programmable Gate Array (FPGA)). La plataforma está destinada a ser utilizada como una herramienta de investigación estrechamente acoplada con receptores GNSS definidos por software. Se ha diseñado, implementado y verificado la cadena completa de recepción, incluyendo el array de antenas y el front-end multi-canal para las señales GPS L1 y Galileo E1. El documento explica en detalle el procesado de señal que se realiza, como por ejemplo, la implementación del módulo de extracción de estadísticas de la señal. Los compromisos de diseño y las complejidades derivadas han sido cuidadosamente analizadas y tenidas en cuenta. La plataforma ha sido utilizada como prueba de concepto para solucionar el problema presentado de la vulnerabilidad del GNSS a las interferencias. Los algoritmos de adquisición introducidos en esta tesis se han implementado y probado en condiciones realistas. El rendimiento de los algoritmos se comparó con las técnicas de adquisición basadas en una sola antena. Se han realizado pruebas en escenarios que contienen interferencias dentro de la banda GNSS, incluyendo interferencias de banda estrecha y banda ancha y señales de comunicación. La plataforma fue diseñada para demostrar la viabilidad de la implementación de nuevos algoritmos de adquisición basados en array de antenas, dejando el resto de las operaciones del receptor (principalmente, los módulos de tracking, decodificación del mensaje de navegación, los observables de código y fase, y la solución básica de Posición, Velocidad y Tiempo (PVT)) a un receptor basado en el concepto de Radio Definida por Software (SDR), el cual se ejecuta en un ordenador personal. El receptor procesa en tiempo real las muestras de la señal filltradas espacialmente, transmitidas usando el bus de datos Gigabit Ethernet. En la última parte de esta Tesis, cerramos ciclo diseñando e implementando completamente este receptor basado en software. El receptor propuesto está dirigido a las arquitecturas de multi-constalación GNSS y multi-frecuencia, persiguiendo los objetivos de eficiencia, modularidad, interoperabilidad y flexibilidad demandada por los usuarios que requieren características no estándar, tales como la extracción de señales intermedias o de datos y intercambio de algoritmos. En este contexto, se presenta un receptor de código abierto que puede trabajar en tiempo real, llamado GNSS-SDR, que contribuye con varias características nuevas. Entre ellas destacan el uso de patrones de diseño de software y técnicas de memoria compartida para administrar de manera eficiente el uso de datos entre los bloques del receptor, el uso de la aceleración por hardware para las operaciones vectoriales más costosas, como la eliminación de la frecuencia Doppler y la correlación de código, y la disponibilidad para compilar y ejecutar el receptor en múltiples plataformas de software y arquitecturas de hardware. A fecha de la escritura de esta Tesis (abril de 2012), el receptor obtiene un rendimiento basado en la medida de la raíz cuadrada del error cuadrático medio en la distancia bidimensional (en inglés, 2-dimensional Distance Root Mean Square (DRMS) error) menor de 2 metros para un escenario GPS L1 C/A con 8 satélites visibles y una dilución de la precisión horizontal (en inglés, Horizontal Dilution Of Precision (HDOP)) de 1.2

    Development and Experimental Analysis of Wireless High Accuracy Ultra-Wideband Localization Systems for Indoor Medical Applications

    Get PDF
    This dissertation addresses several interesting and relevant problems in the field of wireless technologies applied to medical applications and specifically problems related to ultra-wideband high accuracy localization for use in the operating room. This research is cross disciplinary in nature and fundamentally builds upon microwave engineering, software engineering, systems engineering, and biomedical engineering. A good portion of this work has been published in peer reviewed microwave engineering and biomedical engineering conferences and journals. Wireless technologies in medicine are discussed with focus on ultra-wideband positioning in orthopedic surgical navigation. Characterization of the operating room as a medium for ultra-wideband signal transmission helps define system design requirements. A discussion of the first generation positioning system provides a context for understanding the overall system architecture of the second generation ultra-wideband positioning system outlined in this dissertation. A system-level simulation framework provides a method for rapid prototyping of ultra-wideband positioning systems which takes into account all facets of the system (analog, digital, channel, experimental setup). This provides a robust framework for optimizing overall system design in realistic propagation environments. A practical approach is taken to outline the development of the second generation ultra-wideband positioning system which includes an integrated tag design and real-time dynamic tracking of multiple tags. The tag and receiver designs are outlined as well as receiver-side digital signal processing, system-level design support for multi-tag tracking, and potential error sources observed in dynamic experiments including phase center error, clock jitter and drift, and geometric position dilution of precision. An experimental analysis of the multi-tag positioning system provides insight into overall system performance including the main sources of error. A five base station experiment shows the potential of redundant base stations in improving overall dynamic accuracy. Finally, the system performance in low signal-to-noise ratio and non-line-of-sight environments is analyzed by focusing on receiver-side digitally-implemented ranging algorithms including leading-edge detection and peak detection. These technologies are aimed at use in next-generation medical systems with many applications including surgical navigation, wireless telemetry, medical asset tracking, and in vivo wireless sensors
    corecore