370 research outputs found

    DIFUSCO: Graph-based Diffusion Solvers for Combinatorial Optimization

    Full text link
    Neural network-based Combinatorial Optimization (CO) methods have shown promising results in solving various NP-complete (NPC) problems without relying on hand-crafted domain knowledge. This paper broadens the current scope of neural solvers for NPC problems by introducing a new graph-based diffusion framework, namely DIFUSCO. Our framework casts NPC problems as discrete {0, 1}-vector optimization problems and leverages graph-based denoising diffusion models to generate high-quality solutions. We investigate two types of diffusion models with Gaussian and Bernoulli noise, respectively, and devise an effective inference schedule to enhance the solution quality. We evaluate our methods on two well-studied NPC combinatorial optimization problems: Traveling Salesman Problem (TSP) and Maximal Independent Set (MIS). Experimental results show that DIFUSCO strongly outperforms the previous state-of-the-art neural solvers, improving the performance gap between ground-truth and neural solvers from 1.76% to 0.46% on TSP-500, from 2.46% to 1.17% on TSP-1000, and from 3.19% to 2.58% on TSP10000. For the MIS problem, DIFUSCO outperforms the previous state-of-the-art neural solver on the challenging SATLIB benchmark. Our code is available at "https://github.com/Edward-Sun/DIFUSCO"

    Exact Models, Heuristics, and Supervised Learning Approaches for Vehicle Routing Problems

    Get PDF
    This dissertation presents contributions to the field of vehicle routing problems by utilizing exact methods, heuristic approaches, and the integration of machine learning with traditional algorithms. The research is organized into three main chapters, each dedicated to a specific routing problem and a unique methodology. The first chapter addresses the Pickup and Delivery Problem with Transshipments and Time Windows, a variant that permits product transfers between vehicles to enhance logistics flexibility and reduce costs. To solve this problem, we propose an efficient mixed-integer linear programming model that has been shown to outperform existing ones. The second chapter discusses a practical workforce scheduling problem, formulated as a specific type of vehicle routing problem. The objective here is to efficiently assign consultants to various clients and plan their trips. This computational challenge is addressed by using a two-stage approach: the first stage employs a mathematical model, while the second stage refines the solution with a heuristic algorithm. In the final chapter, we explore methods that integrate machine learning with traditional approaches to address the Traveling Salesman Problem, a foundational routing challenge. Our goal is to utilize supervised learning to predict information that boosts the efficiency of existing algorithms. Taken together, these three chapters offer a comprehensive overview of methodologies for addressing vehicle routing problems

    Continuation Path Learning for Homotopy Optimization

    Full text link
    Homotopy optimization is a traditional method to deal with a complicated optimization problem by solving a sequence of easy-to-hard surrogate subproblems. However, this method can be very sensitive to the continuation schedule design and might lead to a suboptimal solution to the original problem. In addition, the intermediate solutions, often ignored by classic homotopy optimization, could be useful for many real-world applications. In this work, we propose a novel model-based approach to learn the whole continuation path for homotopy optimization, which contains infinite intermediate solutions for any surrogate subproblems. Rather than the classic unidirectional easy-to-hard optimization, our method can simultaneously optimize the original problem and all surrogate subproblems in a collaborative manner. The proposed model also supports real-time generation of any intermediate solution, which could be desirable for many applications. Experimental studies on different problems show that our proposed method can significantly improve the performance of homotopy optimization and provide extra helpful information to support better decision-making.Comment: Accepted by the 40th International Conference on Machine Learning (ICML 2023

    Data Driven Waste Management in Smart Cities

    Get PDF
    Bekreftelse fra programsansvarlig på at det holder kun med engelsk sammendrag. Grunnet masteroppgaven er skrevet på engelsk.Waste management is a critical issue worldwide. One of the major challenges in waste management is the efficient collection and transportation of waste from the source to the disposal facility. Research shows that systematic adoption of data-driven technologies (e.g. Machine Learning and Internet-of-Things) can assist public utilities (Kommune) by a) improving the waste collection management process, and b) minimizing the total incurred cost (Misra et al., 2018; Komninos, 2007). Thus, in this work, we show that systematic adoption of data-driven techniques can significantly improve the waste collection process and minimize the incurred cost to public utilities. In order to perform experiments, we generated a synthetic dataset motivated by a real-life urban environment. Also, we aimed to present different approaches to cost-benefit analysis in the targeted scenario. Our study shows that the systematic use of Internet-of-Things-based smart garbage bins, smart transportation algorithms, and Machine Learning can significantly reduce the total incurred cost of public utilities operating in this space

    Traveling Salesman Problem

    Get PDF
    The idea behind TSP was conceived by Austrian mathematician Karl Menger in mid 1930s who invited the research community to consider a problem from the everyday life from a mathematical point of view. A traveling salesman has to visit exactly once each one of a list of m cities and then return to the home city. He knows the cost of traveling from any city i to any other city j. Thus, which is the tour of least possible cost the salesman can take? In this book the problem of finding algorithmic technique leading to good/optimal solutions for TSP (or for some other strictly related problems) is considered. TSP is a very attractive problem for the research community because it arises as a natural subproblem in many applications concerning the every day life. Indeed, each application, in which an optimal ordering of a number of items has to be chosen in a way that the total cost of a solution is determined by adding up the costs arising from two successively items, can be modelled as a TSP instance. Thus, studying TSP can never be considered as an abstract research with no real importance
    • …
    corecore