58,422 research outputs found

    Graph Summarization

    Full text link
    The continuous and rapid growth of highly interconnected datasets, which are both voluminous and complex, calls for the development of adequate processing and analytical techniques. One method for condensing and simplifying such datasets is graph summarization. It denotes a series of application-specific algorithms designed to transform graphs into more compact representations while preserving structural patterns, query answers, or specific property distributions. As this problem is common to several areas studying graph topologies, different approaches, such as clustering, compression, sampling, or influence detection, have been proposed, primarily based on statistical and optimization methods. The focus of our chapter is to pinpoint the main graph summarization methods, but especially to focus on the most recent approaches and novel research trends on this topic, not yet covered by previous surveys.Comment: To appear in the Encyclopedia of Big Data Technologie

    Constructing Graph Node Embeddings via Discrimination of Similarity Distributions

    Full text link
    The problem of unsupervised learning node embeddings in graphs is one of the important directions in modern network science. In this work we propose a novel framework, which is aimed to find embeddings by \textit{discriminating distributions of similarities (DDoS)} between nodes in the graph. The general idea is implemented by maximizing the \textit{earth mover distance} between distributions of decoded similarities of similar and dissimilar nodes. The resulting algorithm generates embeddings which give a state-of-the-art performance in the problem of link prediction in real-world graphs

    Signed Network Modeling Based on Structural Balance Theory

    Full text link
    The modeling of networks, specifically generative models, have been shown to provide a plethora of information about the underlying network structures, as well as many other benefits behind their construction. Recently there has been a considerable increase in interest for the better understanding and modeling of networks, but the vast majority of this work has been for unsigned networks. However, many networks can have positive and negative links(or signed networks), especially in online social media, and they inherently have properties not found in unsigned networks due to the added complexity. Specifically, the positive to negative link ratio and the distribution of signed triangles in the networks are properties that are unique to signed networks and would need to be explicitly modeled. This is because their underlying dynamics are not random, but controlled by social theories, such as Structural Balance Theory, which loosely states that users in social networks will prefer triadic relations that involve less tension. Therefore, we propose a model based on Structural Balance Theory and the unsigned Transitive Chung-Lu model for the modeling of signed networks. Our model introduces two parameters that are able to help maintain the positive link ratio and proportion of balanced triangles. Empirical experiments on three real-world signed networks demonstrate the importance of designing models specific to signed networks based on social theories to obtain better performance in maintaining signed network properties while generating synthetic networks.Comment: CIKM 2018: https://dl.acm.org/citation.cfm?id=327174
    • …
    corecore