4,618 research outputs found

    An efficient multichannel wireless sensor networks MAC protocol based on IEEE 802.11 distributed co-ordinated function.

    Get PDF
    This research aimed to create new knowledge and pioneer a path in the area relating to future trends in the WSN, by resolving some of the issues at the MAC layer in Wireless Sensor Networks. This work introduced a Multi-channel Distributed Coordinated Function (MC-DCF) which takes advantage of multi-channel assignment. The backoff algorithm of the IEEE 802.11 distributed coordination function (DCF) was modified to invoke channel switching, based on threshold criteria in order to improve the overall throughput for wireless sensor networks. This work commenced by surveying different protocols: contention-based MAC protocols, transport layer protocols, cross-layered design and multichannel multi-radio assignments. A number of existing protocols were analysed, each attempting to resolve one or more problems faced by the current layers. The 802.15.4 performed very poorly at high data rate and at long range. Therefore 802.15.4 is not suitable for sensor multimedia or surveillance system with streaming data for future multichannel multi-radio systems. A survey on 802.11 DCF - which was designed mainly for wireless networks –supports and confirm that it has a power saving mechanism which is used to synchronise nodes. However it uses a random back-off mechanism that cannot provide deterministic upper bounds on channel access delay and as such cannot support real-time traffic. The weaknesses identified by surveying this protocol form the backbone of this thesis The overall aim for this thesis was to introduce multichannel with single radio as a new paradigm for IEEE 802.11 Distributed Coordinated Function (DCF) in wireless sensor networks (WSNs) that is used in a wide range of applications, from military application, environmental monitoring, medical care, smart buildings and other industry and to extend WSNs with multimedia capability which sense for instance sounds or motion, video sensor which capture video events of interest. Traditionally WSNs do not need high data rate and throughput, since events are normally captured periodically. With the paradigm shift in technology, multimedia streaming has become more demanding than data sensing applications as such the need for high data rate protocol for WSN which is an emerging technology in this area. The IEEE 802.11 can support data rates up to 54Mbps and 802.11 DCF was designed specifically for use in wireless networks. This thesis focused on designing an algorithm that applied multichannel to IEEE 802.11 DCF back-off algorithm to reduce the waiting time of a node and increase throughput when attempting to access the medium. Data collection in WSN tends to suffer from heavy congestion especially nodes nearer to the sink node. Therefore, this thesis proposes a contention based MAC protocol to address this problem from the inspiration of the 802.11 DCF backoff algorithm resulting from a comparison of IEEE 802.11 and IEEE 802.15.4 for Future Green Multichannel Multi-radio Wireless Sensor Networks

    Control of transport dynamics in overlay networks

    Get PDF
    Transport control is an important factor in the performance of Internet protocols, particularly in the next generation network applications involving computational steering, interactive visualization, instrument control, and transfer of large data sets. The widely deployed Transport Control Protocol is inadequate for these tasks due to its performance drawbacks. The purpose of this dissertation is to conduct a rigorous analytical study on the design and performance of transport protocols, and systematically develop a new class of protocols to overcome the limitations of current methods. Various sources of randomness exist in network performance measurements due to the stochastic nature of network traffic. We propose a new class of transport protocols that explicitly accounts for the randomness based on dynamic stochastic approximation methods. These protocols use congestion window and idle time to dynamically control the source rate to achieve transport objectives. We conduct statistical analyses to determine the main effects of these two control parameters and their interaction effects. The application of stochastic approximation methods enables us to show the analytical stability of the transport protocols and avoid pre-selecting the flow and congestion control parameters. These new protocols are successfully applied to transport control for both goodput stabilization and maximization. The experimental results show the superior performance compared to current methods particularly for Internet applications. To effectively deploy these protocols over the Internet, we develop an overlay network, which resides at the application level to provide data transmission service using User Datagram Protocol. The overlay network, together with the new protocols based on User Datagram Protocol, provides an effective environment for implementing transport control using application-level modules. We also study problems in overlay networks such as path bandwidth estimation and multiple quickest path computation. In wireless networks, most packet losses are caused by physical signal losses and do not necessarily indicate network congestion. Furthermore, the physical link connectivity in ad-hoc networks deployed in unstructured areas is unpredictable. We develop the Connectivity-Through-Time protocols that exploit the node movements to deliver data under dynamic connectivity. We integrate this protocol into overlay networks and present experimental results using network to support a team of mobile robots

    Cellular networks for smart grid communication

    Get PDF
    The next-generation electric power system, known as smart grid, relies on a robust and reliable underlying communication infrastructure to improve the efficiency of electricity distribution. Cellular networks, e.g., LTE/LTE-A systems, appear as a promising technology to facilitate the smart grid evolution. Their inherent performance characteristics and well-established ecosystem could potentially unlock unprecedented use cases, enabling real-time and autonomous distribution grid operations. However, cellular technology was not originally intended for smart grid communication, associated with highly-reliable message exchange and massive device connectivity requirements. The fundamental differences between smart grid and human-type communication challenge the classical design of cellular networks and introduce important research questions that have not been sufficiently addressed so far. Motivated by these challenges, this doctoral thesis investigates novel radio access network (RAN) design principles and performance analysis for the seamless integration of smart grid traffic in future cellular networks. Specifically, we focus on addressing the fundamental RAN problems of network scalability in massive smart grid deployments and radio resource management for smart grid and human-type traffic. The main objective of the thesis lies on the design, analysis and performance evaluation of RAN mechanisms that would render cellular networks the key enabler for emerging smart grid applications. The first part of the thesis addresses the radio access limitations in LTE-based networks for reliable and scalable smart grid communication. We first identify the congestion problem in LTE random access that arises in large-scale smart grid deployments. To overcome this, a novel random access mechanism is proposed that can efficiently support real-time distribution automation services with negligible impact on the background traffic. Motivated by the stringent reliability requirements of various smart grid operations, we then develop an analytical model of the LTE random access procedure that allows us to assess the performance of event-based monitoring traffic under various load conditions and network configurations. We further extend our analysis to include the relation between the cell size and the availability of orthogonal random access resources and we identify an additional challenge for reliable smart grid connectivity. To this end, we devise an interference- and load-aware cell planning mechanism that enhances reliability in substation automation services. Finally, we couple the problem of state estimation in wide-area monitoring systems with the reliability challenges in information acquisition. Using our developed analytical framework, we quantify the impact of imperfect communication reliability in the state estimation accuracy and we provide useful insights for the design of reliability-aware state estimators. The second part of the thesis builds on the previous one and focuses on the RAN problem of resource scheduling and sharing for smart grid and human-type traffic. We introduce a novel scheduler that achieves low latency for distribution automation traffic while resource allocation is performed in a way that keeps the degradation of cellular users at a minimum level. In addition, we investigate the benefits of Device-to-Device (D2D) transmission mode for event-based message exchange in substation automation scenarios. We design a joint mode selection and resource allocation mechanism which results in higher data rates with respect to the conventional transmission mode via the base station. An orthogonal resource partition scheme between cellular and D2D links is further proposed to prevent the underutilization of the scarce cellular spectrum. The research findings of this thesis aim to deliver novel solutions to important RAN performance issues that arise when cellular networks support smart grid communication.Las redes celulares, p.e., los sistemas LTE/LTE-A, aparecen como una tecnología prometedora para facilitar la evolución de la próxima generación del sistema eléctrico de potencia, conocido como smart grid (SG). Sin embargo, la tecnología celular no fue pensada originalmente para las comunicaciones en la SG, asociadas con el intercambio fiable de mensajes y con requisitos de conectividad de un número masivo de dispositivos. Las diferencias fundamentales entre las comunicaciones en la SG y la comunicación de tipo humano desafían el diseño clásico de las redes celulares e introducen importantes cuestiones de investigación que hasta ahora no se han abordado suficientemente. Motivada por estos retos, esta tesis doctoral investiga los principios de diseño y analiza el rendimiento de una nueva red de acceso radio (RAN) que permita una integración perfecta del tráfico de la SG en las redes celulares futuras. Nos centramos en los problemas fundamentales de escalabilidad de la RAN en despliegues de SG masivos, y en la gestión de los recursos radio para la integración del tráfico de la SG con el tráfico de tipo humano. El objetivo principal de la tesis consiste en el diseño, el análisis y la evaluación del rendimiento de los mecanismos de las RAN que convertirán a las redes celulares en el elemento clave para las aplicaciones emergentes de las SGs. La primera parte de la tesis aborda las limitaciones del acceso radio en redes LTE para la comunicación fiable y escalable en SGs. En primer lugar, identificamos el problema de congestión en el acceso aleatorio de LTE que aparece en los despliegues de SGs a gran escala. Para superar este problema, se propone un nuevo mecanismo de acceso aleatorio que permite soportar de forma eficiente los servicios de automatización de la distribución eléctrica en tiempo real, con un impacto insignificante en el tráfico de fondo. Motivados por los estrictos requisitos de fiabilidad de las diversas operaciones en la SG, desarrollamos un modelo analítico del procedimiento de acceso aleatorio de LTE que nos permite evaluar el rendimiento del tráfico de monitorización de la red eléctrica basado en eventos bajo diversas condiciones de carga y configuraciones de red. Además, ampliamos nuestro análisis para incluir la relación entre el tamaño de celda y la disponibilidad de recursos de acceso aleatorio ortogonales, e identificamos un reto adicional para la conectividad fiable en la SG. Con este fin, diseñamos un mecanismo de planificación celular que tiene en cuenta las interferencias y la carga de la red, y que mejora la fiabilidad en los servicios de automatización de las subestaciones eléctricas. Finalmente, combinamos el problema de la estimación de estado en sistemas de monitorización de redes eléctricas de área amplia con los retos de fiabilidad en la adquisición de la información. Utilizando el modelo analítico desarrollado, cuantificamos el impacto de la baja fiabilidad en las comunicaciones sobre la precisión de la estimación de estado. La segunda parte de la tesis se centra en el problema de scheduling y compartición de recursos en la RAN para el tráfico de SG y el tráfico de tipo humano. Presentamos un nuevo scheduler que proporciona baja latencia para el tráfico de automatización de la distribución eléctrica, mientras que la asignación de recursos se realiza de un modo que mantiene la degradación de los usuarios celulares en un nivel mínimo. Además, investigamos los beneficios del modo de transmisión Device-to-Device (D2D) en el intercambio de mensajes basados en eventos en escenarios de automatización de subestaciones eléctricas. Diseñamos un mecanismo conjunto de asignación de recursos y selección de modo que da como resultado tasas de datos más elevadas con respecto al modo de transmisión convencional a través de la estación base. Finalmente, se propone un esquema de partición de recursos ortogonales entre enlaces celulares y D2Postprint (published version

    Teleoperation of passivity-based model reference robust control over the internet

    Get PDF
    This dissertation offers a survey of a known theoretical approach and novel experimental results in establishing a live communication medium through the internet to host a virtual communication environment for use in Passivity-Based Model Reference Robust Control systems with delays. The controller which is used as a carrier to support a robust communication between input-to-state stability is designed as a control strategy that passively compensates for position errors that arise during contact tasks and strives to achieve delay-independent stability for controlling of aircrafts or other mobile objects. Furthermore the controller is used for nonlinear systems, coordination of multiple agents, bilateral teleoperation, and collision avoidance thus maintaining a communication link with an upper bound of constant delay is crucial for robustness and stability of the overall system. For utilizing such framework an elucidation can be formulated by preparing site survey for analyzing not only the geographical distances separating the nodes in which the teleoperation will occur but also the communication parameters that define the virtual topography that the data will travel through. This survey will first define the feasibility of the overall operation since the teleoperation will be used to sustain a delay based controller over the internet thus obtaining a hypothetical upper bound for the delay via site survey is crucial not only for the communication system but also the delay is required for the design of the passivity-based model reference robust control. Following delay calculation and measurement via site survey, bandwidth tests for unidirectional and bidirectional communication is inspected to ensure that the speed is viable to maintain a real-time connection. Furthermore from obtaining the results it becomes crucial to measure the consistency of the delay throughout a sampled period to guarantee that the upper bound is not breached at any point within the communication to jeopardize the robustness of the controller. Following delay analysis a geographical and topological overview of the communication is also briefly examined via a trace-route to understand the underlying nodes and their contribution to the delay and round-trip consistency. To accommodate the communication channel for the controller the input and output data from both nodes need to be encapsulated within a transmission control protocol via a multithreaded design of a robust program within the C language. The program will construct a multithreaded client-server relationship in which the control data is transmitted. For added stability and higher level of security the channel is then encapsulated via an internet protocol security by utilizing a protocol suite for protecting the communication by authentication and encrypting each packet of the session using negotiation of cryptographic keys during each session

    Reliable, Context-Aware and Energy-Efficient Architecture for Wireless Body Area Networks in Sports Applications

    Get PDF
    RÉSUMÉ Un Réseau Corporel Sans Fil (RCSF, Wireless Body Area Network en anglais ou WBAN) permet de collecter de l'information à partir de capteurs corporels. Cette information est envoyée à un hub qui la transforme et qui peut aussi effectuer d'autres fonctions comme gérer des événements corporels, fusionner les données à partir des capteurs, percevoir d’autres paramètres, exécuter les fonctions d’une interface d’utilisateur, et faire un lien vers des infrastructures de plus haut niveau et d’autres parties prenantes. La réduction de la consommation d'énergie d’un RCSF est un des aspects les plus importants qui doit être amélioré lors de sa conception. Cet aspect peut impliquer le développement de protocoles de Contrôles d'Accès au Support (CAS, Media Access Control en anglais ou MAC), protocoles de transport et de routage plus efficients. Le contrôle de la congestion est un autre des facteurs les plus importants dans la conception d’un RCSF, parce que la congestion influe directement sur la Qualité De Service (QDS, Quality of Service en anglais ou QoS) et l’efficience en énergie du réseau. La congestion dans un RCSF peut produire une grande perte de paquets et une haute consommation d’énergie. La QDS est directement impactée par la perte de paquets. L’implémentation de mesures additionnelles est nécessaire pour atténuer l’impact sur la communication des RCSF. Les protocoles de CAS pour RCSF devraient permettre aux capteurs corporels d’accéder rapidement au canal de communication et d’envoyer les données au hub, surtout pour les événements urgents tout en réduisant la consommation d’énergie. Les protocoles de transport pour RCSF doivent fournir de la fiabilité bout-à-bout et de la QDS pour tout le réseau. Cette tâche peut être accomplie par la réduction du ratio de perte de paquets (Packet Loss Ratio en anglais ou PLR) et de la latence tout en gardant l'équité et la faible consommation d'énergie entre les noeuds. Le standard IEEE 802.15.6 suggère un protocole de CAS qui est destiné à être applicable à tous les types de RCSF; toutefois, ce protocole peut être amélioré pour les RCSF utilisés dans le domaine du sport, où la gestion du trafic pourrait être différente d’autres réseaux. Le standard IEEE 802.15.6 comprend la QDS, mais cela ne suggère aucun protocole de transport ou système de contrôle du débit. Le but principal de ce projet de recherche est de concevoir une architecture pour RCSF en trois phases : (i) Conception d’un mécanisme sensible au contexte et efficient en énergie pour fournir une QDS aux RCSF; (ii) Conception d’un mécanisme fiable et efficient en énergie pour fournir une récupération des paquets perdus et de l’équité dans les RCSF; et (iii) Conception d’un système de contrôle du débit sensible au contexte pour fournir un contrôle de congestion aux RCSF. Finalement, ce projet de recherche propose une architecture fiable, sensible au contexte et efficiente en énergie pour RCSF utilisés dans le domaine du sport. Cette architecture fait face à quatre défis : l'efficacité de l'énergie, la sensibilité au contexte, la qualité de service et la fiabilité. La mise en place de cette solution aidera à l’amélioration des compétences, de la performance, de l’endurance et des protocoles d’entraînement des athlètes, ainsi qu’à la détection des points faibles. Cette solution pourrait être prolongée à l’amélioration de la qualité de vie des enfants, des personnes malades ou âgées, ou encore aux domaines militaires, de la sécurité et du divertissement. L’évaluation des protocoles et schémas proposés a été faite par simulations programmées avec le simulateur OMNeT++ et le système Castalia. Premièrement, le protocole de CAS proposé a été comparé avec les protocoles de CAS suivants : IEEE 802.15.6, IEEE 802.15.4 et T-MAC (Timeout MAC). Deuxièmement, le protocole de CAS proposé a été comparé avec le standard IEEE 802.15.6 avec et sans l’utilisation du protocole de transport proposé. Finalement, le protocole de CAS proposé et le standard IEEE 802.15.6 ont été comparés avec et sans l’utilisation du système de contrôle du débit proposé. Le protocole de CAS proposé surpasse les protocoles de CAS IEEE 802.15.6, IEEE 802.15.4 et T-MAC dans le pourcentage de pertes de paquets d’urgence et normaux, l’efficacité en énergie, et la latence du trafic d’urgence et du trafic normal. Le protocole de CAS proposé utilisé avec le protocole du transport proposé surpasse la performance du standard IEEE 802.15.6 dans le pourcentage de perte de paquets avec ou sans trafic d’urgence, l’efficacité en énergie, et la latence du trafic normal. Le système de contrôle du débit proposé a amélioré la performance du protocole de CAS proposé et du standard IEEE 802.15.6 dans le pourcentage de perte de paquets avec ou sans trafic d’urgence, l’efficacité en énergie, et la latence du trafic d’urgence.----------ABSTRACT Information collected from body sensors in a Wireless Body Area Network (WBAN) is sent to a hub or coordinator which processes the information and can also perform other functions such as managing body events, merging data from sensors, sensing other parameters, performing the functions of a user interface and bridging the WBAN to higher-level infrastructure and other stakeholders. The reduction of the power consumption of a WBAN is one of the most important aspects to be improved when designing a WBAN. This challenge might imply the development of more efficient Medium Access Control (MAC), transport and routing protocols. Congestion control is another of the most important factors when a WBAN is designed, due to its direct impact in the Quality of Service (QoS) and the energy efficiency of the network. The presence of congestion in a WBAN can produce a big packet loss and high energy consumption. The QoS is also impacted directly by the packet loss. The implementation of additional measures is necessary to mitigate the impact on WBAN communications. The MAC protocols for WBANs should allow body sensors to get quick access to the channel and send data to the hub, especially in emergency events while reducing the power consumption. The transport protocols for WBANs must provide end-to-end reliability and QoS for the whole network. This task can be accomplished through the reduction of both the Packet Loss Ratio (PLR) and the latency while keeping fairness and low power consumption between nodes. The IEEE 802.15.6 standard suggests a MAC protocol which is intended to be applicable for all kinds of WBANs. Nonetheless, it could be improved for sports WBANs where the traffic-types handling could be different from other networks. The IEEE 802.15.6 standard supports QoS, but it does not suggest any transport protocol or rate control scheme. The main objective of this research project is to design an architecture for WBANs in three phases: (i) Designing a context-aware and energy-efficient mechanism for providing QoS in WBANs; (ii) Designing a reliable and energy-efficient mechanism to provide packet loss recovery and fairness in WBANs; and (iii) Designing a context-aware rate control scheme to provide congestion control in WBANs. Finally, this research project proposes a reliable, context-aware and energy-efficient architecture for WBANs used in sports applications, facing four challenges: energy efficiency, context awareness, quality of service and reliability. The benefits of this solution will help to improve skills, performance, endurance and training protocols of athletes, and deficiency detection. Also, it could be extended to enhance the quality of life of children, ill and elderly people, and to security, military and entertainment fields. The evaluation of the proposed protocols and schemes was made through simulations programed in the OMNeT++ simulator and the Castalia framework. First, the proposed MAC protocol was compared against the IEEE 802.15.6 MAC protocol, the IEEE 802.15.4 MAC protocol and the T-MAC (Timeout MAC) protocol. Second, the proposed MAC protocol was compared with the IEEE 802.15.6 standard with and without the use of the proposed transport protocol. Finally, both the proposed MAC protocol and the IEEE 802.15.6 standard were compared with and without the use of the proposed rate control scheme. The proposed MAC protocol outperforms the IEEE 802.15.6 MAC protocol, the IEEE 802.15.4 MAC protocol and the T-MAC protocol in the percentage of emergency and normal packet loss, the energy effectiveness, and the latency of emergency and normal traffic. The proposed MAC protocol working along with the proposed transport protocol outperforms the IEEE 802.15.6 standard in the percentage of the packet loss with or without emergency traffic, the energy effectiveness, and the latency of normal traffic. The proposed rate control scheme improved the performance of both the proposed MAC protocol and the IEEE 802.15.6 standard in the percentage of the packet loss with or without emergency traffic, the energy effectiveness and the latency of emergency traffic

    Congestion control in wireless sensor networks

    Get PDF
    Information-sensing and data-forwarding in Wireless Sensor Networks (WSN) often incurs high traffic demands, especially during event detection and concurrent transmissions. Managing such large amounts of data remains a considerable challenge in resource-limited systems like WSN, which typically observe a many-to-one transmission model. The result is often a state of constant buffer-overload or congestion, preventing desirable performance to the extent of collapsing an entire network. The work herein seeks to circumvent congestion issues and its negative effects in WSN and derivative platforms such as Body Sensor Networks (BSN). The recent proliferation of WSN has emphasized the need for high Quality-of-Service (QoS) in applications involving real-time and remote monitoring systems such as home automation, military surveillance, environmental hazard detection, as well as BSN-based healthcare and assisted-living systems. Nevertheless, nodes in WSN are often resource-starved as data converges and cause congestion at critical points in such networks. Although this has been a primal concern within the WSN field, elementary issues such as fairness and reliability that directly relate to congestion are still under-served. Moreover, hindering loss of important packets, and the need to avoid packet entrapment in certain network areas remain salient avenues of research. Such issues provide the motivation for this thesis, which lead to four research concerns: (i) reduction of high-traffic volumes; (ii) optimization of selective packet discarding; (iii) avoidance of infected areas; and (iv) collision avoidance with packet-size optimization. Addressing these areas would provide for high QoS levels, and pave the way for seamless transmissions in WSN. Accordingly, the first chapter attempts to reduce the amount of network traffic during simultaneous data transmissions, using a rate-limiting technique known as Relaxation Theory (RT). The goal is for substantial reductions in otherwise large data-streams that cause buffer overflows. Experimentation and analysis with Network Simulator 2 (NS-2), show substantial improvement in performance, leading to our belief that RT-MMF can cope with high incoming traffic scenarios and thus, avoid congestion issues. Whilst limiting congestion is a primary objective, this thesis keenly addresses subsequent issues, especially in worst-case scenarios where congestion is inevitable. The second research question aims at minimizing the loss of important packets crucial to data interpretation at end-systems. This is achieved using the integration of selective packet discarding and Multi-Objective Optimization (MOO) function, contributing to the effective resource-usage and optimized system. A scheme was also developed to detour packet transmissions when nodes become infected. Extensive evaluations demonstrate that incoming packets are successfully delivered to their destinations despite the presence of infected nodes. The final research question addresses packet collisions in a shared wireless medium using distributed collision control that takes packet sizes into consideration. Performance evaluation and analysis reveals desirable performance that are resulted from a strong consideration of packet sizes, and the effect of different Bit Error Rates (BERs)

    Survey of Inter-satellite Communication for Small Satellite Systems: Physical Layer to Network Layer View

    Get PDF
    Small satellite systems enable whole new class of missions for navigation, communications, remote sensing and scientific research for both civilian and military purposes. As individual spacecraft are limited by the size, mass and power constraints, mass-produced small satellites in large constellations or clusters could be useful in many science missions such as gravity mapping, tracking of forest fires, finding water resources, etc. Constellation of satellites provide improved spatial and temporal resolution of the target. Small satellite constellations contribute innovative applications by replacing a single asset with several very capable spacecraft which opens the door to new applications. With increasing levels of autonomy, there will be a need for remote communication networks to enable communication between spacecraft. These space based networks will need to configure and maintain dynamic routes, manage intermediate nodes, and reconfigure themselves to achieve mission objectives. Hence, inter-satellite communication is a key aspect when satellites fly in formation. In this paper, we present the various researches being conducted in the small satellite community for implementing inter-satellite communications based on the Open System Interconnection (OSI) model. This paper also reviews the various design parameters applicable to the first three layers of the OSI model, i.e., physical, data link and network layer. Based on the survey, we also present a comprehensive list of design parameters useful for achieving inter-satellite communications for multiple small satellite missions. Specific topics include proposed solutions for some of the challenges faced by small satellite systems, enabling operations using a network of small satellites, and some examples of small satellite missions involving formation flying aspects.Comment: 51 pages, 21 Figures, 11 Tables, accepted in IEEE Communications Surveys and Tutorial
    • …
    corecore