314 research outputs found

    Wireless Channel Equalization in Digital Communication Systems

    Get PDF
    Our modern society has transformed to an information-demanding system, seeking voice, video, and data in quantities that could not be imagined even a decade ago. The mobility of communicators has added more challenges. One of the new challenges is to conceive highly reliable and fast communication system unaffected by the problems caused in the multipath fading wireless channels. Our quest is to remove one of the obstacles in the way of achieving ultimately fast and reliable wireless digital communication, namely Inter-Symbol Interference (ISI), the intensity of which makes the channel noise inconsequential. The theoretical background for wireless channels modeling and adaptive signal processing are covered in first two chapters of dissertation. The approach of this thesis is not based on one methodology but several algorithms and configurations that are proposed and examined to fight the ISI problem. There are two main categories of channel equalization techniques, supervised (training) and blind unsupervised (blind) modes. We have studied the application of a new and specially modified neural network requiring very short training period for the proper channel equalization in supervised mode. The promising performance in the graphs for this network is presented in chapter 4. For blind modes two distinctive methodologies are presented and studied. Chapter 3 covers the concept of multiple cooperative algorithms for the cases of two and three cooperative algorithms. The select absolutely larger equalized signal and majority vote methods have been used in 2-and 3-algoirithm systems respectively. Many of the demonstrated results are encouraging for further research. Chapter 5 involves the application of general concept of simulated annealing in blind mode equalization. A limited strategy of constant annealing noise is experimented for testing the simple algorithms used in multiple systems. Convergence to local stationary points of the cost function in parameter space is clearly demonstrated and that justifies the use of additional noise. The capability of the adding the random noise to release the algorithm from the local traps is established in several cases

    Adaptive neural control of nonlinear systems with hysteresis

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Neural Network Based Central Heating System Load Prediction and Constrained Control

    Get PDF
    A neural network (NN) based heating system load prediction and control scheme are proposed. Different from traditional physical principle based load calculation method, a multilayer NN is incorporated with selected input features and trained to predict the heating load as well as the desired supply water temperature in heating supply loop. In this manner, a complicated load calculation model can be replaced by simple but efficient data-driven scheme and the response time to outdoor temperature variation can be enhanced. Moreover, in order to handle the input and output constraints in valve opening degree control task to achieve desired supply water temperature, Barrier Lyapunov candidate function and axillary system technique are involved. An additional NN is employed to approximate the system transfer function with reliable accuracy. The stability of the system is guaranteed through rigorous mathematical analysis. The excellent performance of the novelly proposed control over traditional PID is demonstrated via extensive simulation study. A quantitative case study is also conducted to verify the flexibility and validity of proposed load prediction strategy

    Development of adaptive control methodologies and algorithms for nonlinear dynamic systems based on u-control framework

    Get PDF
    Inspired by the U-model based control system design (or called U-control system design), this study is mainly divided into three parts. The first one is a U-model based control system for unstable non-minimum phase system. Pulling theorems are proposed to apply zeros pulling filters and poles pulling filters to pass the unstable non-minimum phase characteristics of the plant model/system. The zeros pulling filters and poles pulling filters derive from a customised desired minimum phase plant model. The remaining controller design can be any classic control systems or U-model based control system. The difference between classic control systems and U-model based control system for unstable non-minimum phase will be shown in the case studies.Secondly, the U-model framework is proposed to integrate the direct model reference adaptive control with MIT normalised rules for nonlinear dynamic systems. The U-model based direct model reference adaptive control is defined as an enhanced direct model reference adaptive control expanding the application range from linear system to nonlinear system. The estimated parameter of the nonlinear dynamic system will be placement as the estimated gain of a customised linear virtual plant model with MIT normalised rules. The customised linear virtual plant model is the same form as the reference model. Moreover, the U-model framework is design for the nonlinear dynamic system within the root inversion.Thirdly, similar to the structure of the U-model based direct model reference adaptive control with MIT normalised rules, the U-model based direct model reference adaptive control with Lyapunov algorithms proposes a linear virtual plant model as well, estimated and adapted the particular parameters as the estimated gain which of the nonlinear plant model by Lyapunov algorithms. The root inversion such as Newton-Ralphson algorithm provides the simply and concise method to obtain the inversion of the nonlinear system without the estimated gain. The proposed U-model based direct control system design approach is applied to develop the controller for a nonlinear system to implement the linear adaptive control. The computational experiments are presented to validate the effectiveness and efficiency of the proposed U-model based direct model reference adaptive control approach and stabilise with satisfied performance as applying for the linear plant model

    Fault tolerant control for nonlinear aircraft based on feedback linearization

    Get PDF
    The thesis concerns the fault tolerant flight control (FTFC) problem for nonlinear aircraft by making use of analytical redundancy. Considering initially fault-free flight, the feedback linearization theory plays an important role to provide a baseline control approach for de-coupling and stabilizing a non-linear statically unstable aircraft system. Then several reconfigurable control strategies are studied to provide further robust control performance:- A neural network (NN)-based adaption mechanism is used to develop reconfigurable FTFC performance through the combination of a concurrent updated learninglaw. - The combined feedback linearization and NN adaptor FTFC system is further improved through the use of a sliding mode control (SMC) strategy to enhance the convergence of the NN learning adaptor. - An approach to simultaneous estimation of both state and fault signals is incorporated within an active FTFC system.The faults acting independently on the three primary actuators of the nonlinear aircraft are compensated in the control system.The theoretical ideas developed in the thesis have been applied to the nonlinear Machan Unmanned Aerial Vehicle (UAV) system. The simulation results obtained from a tracking control system demonstrate the improved fault tolerant performance for all the presented control schemes, validated under various faults and disturbance scenarios.A Boeing 747 nonlinear benchmark model, developed within the framework of the GARTEUR FM-AG 16 project “fault tolerant flight control systems”,is used for the purpose of further simulation study and testing of the FTFC scheme developed by making the combined use of concurrent learning NN and SMC theory. The simulation results under the given fault scenario show a promising reconfiguration performance
    corecore