17 research outputs found

    Energy-Efficiency Maximization for Cooperative Spectrum Sensing in Cognitive Sensor Networks

    Full text link

    NOMA-enhanced computation over multi-access channels

    Get PDF
    Massive numbers of nodes will be connected in future wireless networks. This brings great difficulty to collect a large amount of data. Instead of collecting the data individually, computation over multi-access channels (CoMAC) provides an intelligent solution by computing a desired function over the air based on the signal-superposition property of wireless channels. To improve the spectrum efficiency in conventional CoMAC, we propose the use of non-orthogonal multiple access (NOMA) for functions in CoMAC. The desired functions are decomposed into several sub-functions, and multiple sub-functions are selected to be superposed over each resource block (RB). The corresponding achievable rate is derived based on sub-function superposition, which prevents a vanishing computation rate for large numbers of nodes. We further study the limiting case when the number of nodes goes to infinity. An exact expression of the rate is derived that provides a lower bound on the computation rate. Compared with existing CoMAC, the NOMA-based CoMAC not only achieves a higher computation rate but also provides an improved non-vanishing rate. Furthermore, the diversity order of the computation rate is derived, which shows that the system performance is dominated by the node with the worst channel gain among these sub-functions in each RB

    A survey on MAC protocols for complex self-organizing cognitive radio networks

    Get PDF
    Complex self-organizing cognitive radio (CR) networks serve as a framework for accessing the spectrum allocation dynamically where the vacant channels can be used by CR nodes opportunistically. CR devices must be capable of exploiting spectrum opportunities and exchanging control information over a control channel. Moreover, CR nodes should intelligently coordinate their access between different cognitive radios to avoid collisions on the available spectrum channels and to vacate the channel for the licensed user in timely manner. Since inception of CR technology, several MAC protocols have been designed and developed. This paper surveys the state of the art on tools, technologies and taxonomy of complex self-organizing CR networks. A detailed analysis on CR MAC protocols form part of this paper. We group existing approaches for development of CR MAC protocols and classify them into different categories and provide performance analysis and comparison of different protocols. With our categorization, an easy and concise view of underlying models for development of a CR MAC protocol is provided

    Medium access control design for distributed opportunistic radio networks

    Get PDF
    Existing wireless networks are characterized by a fixed spectrum assignment policy. However, the scarcity of available spectrum and its inefficient usage demands for a new communication paradigm to exploit the existing spectrum opportunistically. Future Cognitive Radio (CR) devices should be able to sense unoccupied spectrum and will allow the deployment of real opportunistic networks. Still, traditional Physical (PHY) and Medium Access Control (MAC) protocols are not suitable for this new type of networks because they are optimized to operate over fixed assigned frequency bands. Therefore, novel PHY-MAC cross-layer protocols should be developed to cope with the specific features of opportunistic networks. This thesis is mainly focused on the design and evaluation of MAC protocols for Decentralized Cognitive Radio Networks (DCRNs). It starts with a characterization of the spectrum sensing framework based on the Energy-Based Sensing (EBS) technique considering multiple scenarios. Then, guided by the sensing results obtained by the aforementioned technique, we present two novel decentralized CR MAC schemes: the first one designed to operate in single-channel scenarios and the second one to be used in multichannel scenarios. Analytical models for the network goodput, packet service time and individual transmission probability are derived and used to compute the performance of both protocols. Simulation results assess the accuracy of the analytical models as well as the benefits of the proposed CR MAC schemes

    A novel MAC Protocol for Cognitive Radio Networks

    Get PDF
    In Partial Fulfilment of the Requirements for the Degree Doctor of Philosophy from the University of BedfordshireThe scarcity of bandwidth in the radio spectrum has become more vital since the demand for wireless applications has increased. Most of the spectrum bands have been allocated although many studies have shown that these bands are significantly underutilized most of the time. The problem of unavailability of spectrum bands and the inefficiency in their utilization have been smartly addressed by the cognitive radio (CR) technology which is an opportunistic network that senses the environment, observes the network changes, and then uses knowledge gained from the prior interaction with the network to make intelligent decisions by dynamically adapting transmission characteristics. In this thesis, recent research and survey about the advances in theory and applications of cognitive radio technology has been reviewed. The thesis starts with the essential background on cognitive radio techniques and systems and discusses those characteristics of CR technology, such as standards, applications and challenges that all can help make software radio more personal. It then presents advanced level material by extensively reviewing the work done so far in the area of cognitive radio networks and more specifically in medium access control (MAC) protocol of CR. The list of references will be useful to both researchers and practitioners in this area. Also, it can be adopted as a graduate-level textbook for an advanced course on wireless communication networks. The development of new technologies such as Wi-Fi, cellular phones, Bluetooth, TV broadcasts and satellite has created immense demand for radio spectrum which is a limited natural resource ranging from 30KHz to 300GHz. For every wireless application, some portion of the radio spectrum needs to be purchased, and the Federal Communication Commission (FCC) allocates the spectrum for some fee for such services. This static allocation of the radio spectrum has led to various problems such as saturation in some bands, scarcity, and lack of radio resources to new wireless applications. Most of the frequencies in the radio spectrum have been allocated although many studies have shown that the allocated bands are not being used efficiently. The CR technology is one of the effective solutions to the shortage of spectrum and the inefficiency of its utilization. In this thesis, a detailed investigation on issues related to the protocol design for cognitive radio networks with particular emphasis on the MAC layer is presented. A novel Dynamic and Decentralized and Hybrid MAC (DDH-MAC) protocol that lies between the CR MAC protocol families of globally available common control channel (GCCC) and local control channel (non-GCCC). First, a multi-access channel MAC protocol, which integrates the best features of both GCCC and non-GCCC, is proposed. Second, an enhancement to the protocol is proposed by enabling it to access more than one control channel at the same time. The cognitive users/secondary users (SUs) always have access to one control channel and they can identify and exploit the vacant channels by dynamically switching across the different control channels. Third, rapid and efficient exchange of CR control information has been proposed to reduce delays due to the opportunistic nature of CR. We have calculated the pre-transmission time for CR and investigate how this time can have a significant effect on nodes holding a delay sensitive data. Fourth, an analytical model, including a Markov chain model, has been proposed. This analytical model will rigorously analyse the performance of our proposed DDH-MAC protocol in terms of aggregate throughput, access delay, and spectrum opportunities in both the saturated and non-saturated networks. Fifth, we develop a simulation model for the DDH-MAC protocol using OPNET Modeler and investigate its performance for queuing delays, bit error rates, backoff slots and throughput. It could be observed from both the numerical and simulation results that when compared with existing CR MAC protocols our proposed MAC protocol can significantly improve the spectrum utilization efficiency of wireless networks. Finally, we optimize the performance of our proposed MAC protocol by incorporating multi-level security and making it energy efficient

    Cognitive Radio Network with a distributed control channel and quality-of-service solution

    Get PDF
    The proliferation of wireless access and applications to the Internet and the advent of a myriad of highly evolved portable communication devices; creates the need for an efficiently utilized radio spectrum. This is paramount in the licensed and unlicensed radio frequency bands, that spawn an exponential growth in Dynamic Spectrum Access (DSA) research, Cognitive Radio (CR) and Cognitive Radio Networks (CRN) research. DSA research has given way to the paradigm shift toward CR with its dynamic changes in transmission schemas. This paradigm shift from a fixed and centralized frequency spectrum environment has morphed into a dynamic and decentralized one. CR provides wireless nodes the capability to adapt and exploit the frequency spectrum. The spectrum information obtained is scanned and updated to determine the channel quality for viability and a utilization/availability by the licensed (primary) user. To take advantage of the CR capabilities, previous research has focused on a Common Control Channel(CCC) for the control signals to be used for spectrum control. This utilization generates channel saturation, extreme transmission overhead of control information, and a point of vulnerability. The traditional designs for wireless routing protocols do not support an ad hoc multi-hop cognitive radio network model. This research focuses on a real world implementation of a heterogeneous ad hoc multi-hop Cognitive Radio Network. An overall model, coined Emerald, has been designed to address the architecture; the Medium Access Control layer, E-MAC; and the network layer, E-NET. First, a Medium Access Control(MAC) layer protocol is provided to avoid the pitfalls of a common control channel. This new design provides CRNs with network topology and channel utilization information. Spectrum etiquette, in turn, addresses channel saturation, control overhead, and the single point of vulnerability. Secondly, a routing model is proposed that will address the efficiency of an ad hoc multi-hop CRN with a focus on the Quality-of-Service(QoS) of the point-to-point as well as end-to-end communication. This research has documented weaknesses in spectrum utilization; it has been expanded to accommodate a distributed control environment. Subsets of the model will be validated through Network Simulator-2(NS/2) and MatLab© simulations to determine point-to-point and end-to-end communications

    Spectrum sensing for cognitive radios: Algorithms, performance, and limitations

    Get PDF
    Inefficient use of radio spectrum is becoming a serious problem as more and more wireless systems are being developed to operate in crowded spectrum bands. Cognitive radio offers a novel solution to overcome the underutilization problem by allowing secondary usage of the spectrum resources along with high reliable communication. Spectrum sensing is a key enabler for cognitive radios. It identifies idle spectrum and provides awareness regarding the radio environment which are essential for the efficient secondary use of the spectrum and coexistence of different wireless systems. The focus of this thesis is on the local and cooperative spectrum sensing algorithms. Local sensing algorithms are proposed for detecting orthogonal frequency division multiplexing (OFDM) based primary user (PU) transmissions using their autocorrelation property. The proposed autocorrelation detectors are simple and computationally efficient. Later, the algorithms are extended to the case of cooperative sensing where multiple secondary users (SUs) collaborate to detect a PU transmission. For cooperation, each SU sends a local decision statistic such as log-likelihood ratio (LLR) to the fusion center (FC) which makes a final decision. Cooperative sensing algorithms are also proposed using sequential and censoring methods. Sequential detection minimizes the average detection time while censoring scheme improves the energy efficiency. The performances of the proposed algorithms are studied through rigorous theoretical analyses and extensive simulations. The distributions of the decision statistics at the SU and the test statistic at the FC are established conditioned on either hypothesis. Later, the effects of quantization and reporting channel errors are considered. Main aim in studying the effects of quantization and channel errors on the cooperative sensing is to provide a framework for the designers to choose the operating values of the number of quantization bits and the target bit error probability (BEP) for the reporting channel such that the performance loss caused by these non-idealities is negligible. Later a performance limitation in the form of BEP wall is established for the cooperative sensing schemes in the presence of reporting channel errors. The BEP wall phenomenon is important as it provides the feasible values for the reporting channel BEP used for designing communication schemes between the SUs and the FC

    A survey on vehicular communication for cooperative truck platooning application

    Get PDF
    Platooning is an application where a group of vehicles move one after each other in close proximity, acting jointly as a single physical system. The scope of platooning is to improve safety, reduce fuel consumption, and increase road use efficiency. Even if conceived several decades ago as a concept, based on the new progress in automation and vehicular networking platooning has attracted particular attention in the latest years and is expected to become of common implementation in the next future, at least for trucks.The platoon system is the result of a combination of multiple disciplines, from transportation, to automation, to electronics, to telecommunications. In this survey, we consider the platooning, and more specifically the platooning of trucks, from the point of view of wireless communications. Wireless communications are indeed a key element, since they allow the information to propagate within the convoy with an almost negligible delay and really making all vehicles acting as one. Scope of this paper is to present a comprehensive survey on connected vehicles for the platooning application, starting with an overview of the projects that are driving the development of this technology, followed by a brief overview of the current and upcoming vehicular networking architecture and standards, by a review of the main open issues related to wireless communications applied to platooning, and a discussion of security threats and privacy concerns. The survey will conclude with a discussion of the main areas that we consider still open and that can drive future research directions.(c) 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

    Modeling and Analysis of Cognitive Radio Ad Hoc Networks

    Get PDF
    Eine Welt ohne drahtlose Ad-Hoc Netzwerke ist heute kaum noch vorstellbar.Auf Grund der geringen Kosten und des minimalen Installationsaufwands werden gegenwärtig immer mehr Geräte in immer mehr Anwendungsfeldern eingesetzt. Da die meisten dieser Netzwerke im lizenzfreien ISM-Band operieren, ist dieses heute stark ausgelastet und weist kaum noch freie Kapazitäten auf. Aktuelle Studien der Federal Communication Commission (FCC) belegen allerdings, dass große Teile (bis zu 70%) der lizenzbehafteten Frequenzen ungenutzt sind. Dieser Umstand zeigt, dass das Problem weniger die generelle Knappheit an freien Frequenzen ist, sondern vielmehr in der ineffizienten Verteilung bzw.Nutzung der verfügbaren Resourcen zu suchen ist. Das Hauptaugenmerk der vorliegenden Dissertation liegt in der Verbesserung der Spektrumsauslastung, um dadurch die weitere Entwicklung von drahtlosen Ad-Hoc Netzwerken zu ermöglichen.In dieser Arbeit wird ein neues Spektrum-Management-Konzept mit dem Namen Opportunistic Spectrum Access with Backup channel (OSAB) entwickelt und vorgestellt. Das hierbei zugrunde liegende Konzept gestattet Secondary Users (SUs)dynamisch und flexibel auf Frequenzen unlizenzierter als auch lizensierterFrequenzbänder zu zugreifen, wenn diese vom Primary User (PU) gerade nicht genutzt werden - es also keine Interferenzen geben kann.Da der Zugriff auf das Frequenzspektrum heute existierender Systeme noch sehr unflexibel ist, soll dieser in Zukunft durch Cognitive Radios (CR)weit flexibler und dynamischer gestaltet werden können. Bei der Entstehung von OSAB wurden speziell die unterschiedlichen Eigenschaften verschiedener Frequenzbänder berücksichtigt.Der Hauptvorteil von lizenzbehafteten Bändern ist, dass diese in hoher Anzahl verfügbar sind. Der Hauptvorteil von lizenzfreien Frequenzen ergibt sich hingegen aus der Gleichstellung aller Nutzer. Sobald ein SU einmal einen Kanal belegt hat, kann er nicht mehr aus selbigem verdrängt werden.Kommuniziert OSAB in lizenzierten Bändern, so wird stets ein Backup Channel (BC)vorgehalten um auf das plötzliche Auftreten des PUs reagieren zu können.Das vorgeschlagene Konzept wurde in dieser Arbeit außerdem einer intensiven Analyse mittel Markov-Ketten unterzogen. Die dabei erzielten Ergebnisse zeigen,dass OSAB den Paketverlust und die erwartete Anzahl an Spektrum-Hand-Offs um 60% bzw. 17% reduzieren kann.Um den Nutzen und die Vorteile von OSAB praktisch unter Beweis zu stellen, wurde in der vorliegenden Arbeit weiterhin das MAC-Protokoll SWITCH (opportunisticSpectrum access WITh backup CHannel) entwickelt.SWITCH ist ein dezentrales, asynchrones, verbindungsbasiertes MAC-Protokoll, welchesdurch das Backup-Channel-Konzept in der Lage ist, effektiv auf das plötzliche Eintreffen von PUs zu reagieren.Jeder SU ist dabei mit zwei Transceivern ausgestattet, wobei einer davon stets für die Kommunikation auf dem gemeinsam genutzten Kontroll-Kanal (Common Control Channel) verantwortlich ist. Der zweite Transceiver ist so ausgelegt, dass dieser periodisch alle ungenutzten Kanäle absucht und dynamisch auf diese zugreifen kann. Um den Zustand eines Kanals (belegt/nicht belegt) korrekt erkennen zu können wird in dieser Arbeit eine einfache aber effektive Form des kooperativen Sensings genutzt. Die Performanz des Protokolls wurde mit Hilfe von Simulationen evaluiert. Die Ergebnisse zeigen, dass SWITCH im Vergleich zu anderen CR-MAC-Protokollen eine Verbesserung des Durchsatzes von bemerkenswerten 91,7% erzielen konnte. Zusammenfassend kann gesagt werden, dass die vorgeschlagenen Beiträge einen Schritt hin zu einer effektiveren Nutzung der verfügbaren Funkressourcen und zur Erhöhung der Kapazität von drahtlosen Ad-Hoc Netzwerken darstellen.Wireless ad hoc networks are becoming more ubiquitous in terms of devices, application areas, etc. due to their low cost and minimal deployment effort. Since all these networks operate in the unlicensed band, the problems of congestion and spectrum scarcity have arisen. On the other hand, a recent study by Federal Communications Commission (FCC) has revealed that swathes of licensed bands, measured by 70%, are unutilized. This highlights that the actual problem is not the scarcity of spectrum but inefficient allocation policies and usage. Therefore, this dissertation is focused on improving spectrum utilization and efficiency to tackle the spectrum scarcity problem and support further wireless ad hoc networks.This thesis proposes a new spectrum management concept called opportunistic spectrum access with backup channel (OSAB). The proposed concept provides secondary users (SUs) (e.g. ad hoc users) with the ability to adaptively and dynamically exploit channels from both licensed and unlicensed bands without interfering the legacy users of licensed bands, i.e. the so called primary users (PUs). Since existing radio systems offer very limited flexibility, cognitive radios (CR), which can sense and adapt to radio environments, are exploited to support such a dynamic concept. For the development of OSAB, the channels' characteristics from each band are taken into consideration. The main advantage of licensed channels is their availability in significant numbers, whereas, the main advantage of unlicensed channels is that all users have the same rights to channel access and thus no preemption occurs once a user obtains a channel. In addition, OSAB uses a backup channel (BC) to handle the appearance of PUs and thus facilitates SU communication. The proposed concept is extensively evaluated using a Markov chain model and compared to existing spectrum management approaches such as opportunistic spectrum access (OSA). The results indicate that OSAB decreases the dropping probability and the expected number of spectrum handoffs for SUs compared to OSA by 60% and 17% respectively.In order to apply OSAB practically, we develop a MAC protocol that reacts efficiently to sudden appearance of PUs. The new protocol is named opportunistic Spectrum access WITh backup CHannel (SWITCH) protocol. SWITCH is a decentralized, asynchronous, and contention-based MAC protocol. The BC's concept makes SWITCH extremely robust to the appearance of PUs. Each SU is equipped with two transceivers, one is tuned to a common control channel for the negotiation purpose with other SUs while the other is designed specifically to periodically sense and dynamically use the identified unused channels. To obtain the channel state accurately, we propose an efficient spectrum sensing strategy. This strategy is based on cooperative spectrum sensing among SUs. The performance of proposed protocol is evaluated through simulations. The results show that SWITCH accomplishes a remarkable 91.7% throughput gain over other CR-MAC protocolsTo conclude, the proposed contributions are a step forward towards efficient use of available radio resources and improve the spectrum capacity for wireless ad hoc networks
    corecore