8 research outputs found

    Delivered dose can be a better predictor of rectal toxicity than planned dose in prostate radiotherapy

    Get PDF
    BACKGROUND AND PURPOSE\textbf{BACKGROUND AND PURPOSE}: For the first time, delivered dose to the rectum has been calculated and accumulated throughout the course of prostate radiotherapy using megavoltage computed tomography (MVCT) image guidance scans. Dosimetric parameters were linked with toxicity to test the hypothesis that delivered dose is a stronger predictor of toxicity than planned dose. MATERIAL AND METHODS\textbf{MATERIAL AND METHODS}: Dose-surface maps (DSMs) of the rectal wall were automatically generated from daily MVCT scans for 109 patients within the VoxTox research programme. Accumulated-DSMs, representing total delivered dose, and planned-DSMs, from planning CT data, were parametrised using Equivalent Uniform Dose (EUD) and 'DSM dose-width', the lateral dimension of an ellipse fitted to a discrete isodose cluster. Associations with 6 toxicity endpoints were assessed using receiver operator characteristic curve analysis. RESULTS\textbf{RESULTS}: For rectal bleeding, the area under the curve (AUC) was greater for accumulated dose than planned dose for DSM dose-widths up to 70Gy. Accumulated 65Gy DSM dose-width produced the strongest spatial correlation (AUC 0.664), while accumulated EUD generated the largest AUC overall (0.682). For proctitis, accumulated EUD was the only reportable predictor (AUC 0.673). Accumulated EUD was systematically lower than planned EUD. CONCLUSIONS\textbf{CONCLUSIONS}: Dosimetric parameters extracted from accumulated DSMs have demonstrated stronger correlations with rectal bleeding and proctitis, than planned DSMs.LEAS is supported by the University of Cambridge W D Armstrong Trust Fund; AMB, MRR and KH are supported by the VoxTox Programme Grant, which is funded by Cancer Research UK (CRUK); JES was supported by a CRUK Clinical Research Fellowship; DJN is supported by a CRUK Clinical Research Fellowship; NGB is Principle Investigator of the CRUK VoxTox Programme and is supported by the NIHR Cambridge Biomedical Research Centre

    Nonnegative Compression for Semi-Nonnegative Independent Component Analysis

    Get PDF
    International audienceIn many Independent Component Analysis (ICA) problems the mixing matrix is nonnegative while the sources are unconstrained, giving rise to what we call hereafter the Semi-Nonnegative ICA (SN-ICA) problems. Exploiting the nonnegativity property can improve the ICA result. Besides, in some practical applications, the dimension of the observation space must be reduced. However, the classical dimension compression procedure, such as prewhitening, breaks the nonnegativity property of the compressed mixing matrix. In this paper, we introduce a new nonnegative compression method, which guarantees the nonnegativity of the compressed mixing matrix. Simulation results show its fast convergence property. An illustration of Blind Source Separation (BSS) of Magnetic Resonance Spectroscopy (MRS) data confirms the validity of the proposed method

    A comparison of the CAR and DAGAR spatial random effects models with an application to diabetics rate estimation in Belgium

    Get PDF
    When hierarchically modelling an epidemiological phenomenon on a finite collection of sites in space, one must always take a latent spatial effect into account in order to capture the correlation structure that links the phenomenon to the territory. In this work, we compare two autoregressive spatial models that can be used for this purpose: the classical CAR model and the more recent DAGAR model. Differently from the former, the latter has a desirable property: its ρ parameter can be naturally interpreted as the average neighbor pair correlation and, in addition, this parameter can be directly estimated when the effect is modelled using a DAGAR rather than a CAR structure. As an application, we model the diabetics rate in Belgium in 2014 and show the adequacy of these models in predicting the response variable when no covariates are available

    A Statistical Approach to the Alignment of fMRI Data

    Get PDF
    Multi-subject functional Magnetic Resonance Image studies are critical. The anatomical and functional structure varies across subjects, so the image alignment is necessary. We define a probabilistic model to describe functional alignment. Imposing a prior distribution, as the matrix Fisher Von Mises distribution, of the orthogonal transformation parameter, the anatomical information is embedded in the estimation of the parameters, i.e., penalizing the combination of spatially distant voxels. Real applications show an improvement in the classification and interpretability of the results compared to various functional alignment methods

    A novel classification method for prediction of rectal bleeding in prostate cancer radiotherapy based on a semi-nonnegative ICA of 3D planned dose distributions

    No full text
    International audienceThe understanding of dose/side-effects relationships in prostate cancer radiotherapy is crucial to define appropriate individual's constraints for the therapy planning. Most of the existing methods to predict side effects do not fully exploit the rich spatial information conveyed by the three-dimensional planned dose distributions. We propose a new classification method for three-dimensional individuals' doses, based on a new semi-nonnegative ICA algorithm to identify patients at risk of presenting rectal bleeding from a population treated for prostate cancer. The method first determines two bases of vectors from the population data: the two bases span vector subspaces, which characterize patients with and without rectal bleeding, respectively. The classification is then achieved by calculating the distance of a given patient to the two subspaces. The results, obtained on a cohort of 87 patients (at two years follow-up) treated with radiotherapy, showed high performance in terms of sensitivity and specificity

    Libro de actas. XXXV Congreso Anual de la Sociedad Española de Ingeniería Biomédica

    Get PDF
    596 p.CASEIB2017 vuelve a ser el foro de referencia a nivel nacional para el intercambio científico de conocimiento, experiencias y promoción de la I D i en Ingeniería Biomédica. Un punto de encuentro de científicos, profesionales de la industria, ingenieros biomédicos y profesionales clínicos interesados en las últimas novedades en investigación, educación y aplicación industrial y clínica de la ingeniería biomédica. En la presente edición, más de 160 trabajos de alto nivel científico serán presentados en áreas relevantes de la ingeniería biomédica, tales como: procesado de señal e imagen, instrumentación biomédica, telemedicina, modelado de sistemas biomédicos, sistemas inteligentes y sensores, robótica, planificación y simulación quirúrgica, biofotónica y biomateriales. Cabe destacar las sesiones dedicadas a la competición por el Premio José María Ferrero Corral, y la sesión de competición de alumnos de Grado en Ingeniería biomédica, que persiguen fomentar la participación de jóvenes estudiantes e investigadores
    corecore