8,834 research outputs found

    A fuzzy set theory-based fast fault diagnosis approach for rotators of induction motors

    Get PDF
    Induction motors have been widely used in industry, agriculture, transportation, national defense engineering, etc. Defects of the motors will not only cause the abnormal operation of production equipment but also cause the motor to run in a state of low energy efficiency before evolving into a fault shutdown. The former may lead to the suspension of the production process, while the latter may lead to additional energy loss. This paper studies a fuzzy rule-based expert system for this purpose and focuses on the analysis of many knowledge representation methods and reasoning techniques. The rotator fault of induction motors is analyzed and diagnosed by using this knowledge, and the diagnosis result is displayed. The simulation model can effectively simulate the broken rotator fault by changing the resistance value of the equivalent rotor winding. And the influence of the broken rotor bar fault on the motors is described, which provides a basis for the fault characteristics analysis. The simulation results show that the proposed method can realize fast fault diagnosis for rotators of induction motors

    Scaling up integrated photonic reservoirs towards low-power high-bandwidth computing

    No full text

    Quantum dots based superluminescent diodes and photonic crystal surface emitting lasers

    Get PDF
    This thesis reports the design, fabrication, and electrical and optical characterisations of GaAs-based quantum dot (QD) photonic devices, specifically focusing on superluminescent diodes (SLDs) and photonic crystal surface-emitting lasers (PCSELs). The integration of QD active regions in these devices is advantageous due to their characteristics such as temperature insensitivity, feedback insensitivity, and ability to utilise the ground state (GS) and excited state (ES) of the dots. In an initial study concerning the fabrication of QD-SLDs, the influence of ridge waveguide etch depth on the electrical and optical properties of the devices are investigated. It is shown that the output power and modal gain from shallow etched ridge waveguide is higher than those of deep etched waveguides. Subsequently, the thermal performance of the devices is analysed. With increased temperature over 170 ĀŗC, the spectral bandwidth is dramatically increased by thermally excited carrier transition in excited states of the dots. Following this, an investigation of a high dot density hybrid quantum well/ quantum dot (QW/QD) active structure for broadband, high-modal gain SLDs is presented. The influence of the number of QD layers on the modal gain of hybrid QW/QD structures is analysed. It is shown that higher number of dot layer provides higher modal gain value, however, there is lack of emission from QW due to the requirement of large number of carriers to saturate the QD. Additionally, a comparison is made between ā€œunchirped QDā€ and ā€œ chirped QDā€ of hybrid QW/QD structure in terms of modal gain and spectral bandwidth. It is showed that ā€œchirpedā€ of the QD can improve the ā€œflatnessā€ of the spectral bandwidth. Lastly, the use of self-assembled InAs QD as the active material in epitaxially regrown GaAs-based PCSELs is explored for the first time. Initially, it is shown that both GS and ES lasing can be achieved for QD-PCSELs by changing the grating period of the photonic crystal (PC). The careful design of these grating periods allows lasing from neighbouring devices at GS ( ~1230 nm) and ES (~1140 nm), 90 nm apart in wavelength. Following this, the effect of device area, PC etch depth, PC atom shape (circle or triangle or orientation) on lasing performance is presented. It is shown that lower threshold current density and higher slope efficiencies is achieved with increasing the device size. The deeper PC height device has higher output power due to more suitable height and minimal distance to active region. The triangular atom shape has slightly higher slope efficiency compared to triangular atom shape which is attributed to breaking in-plane symmetry and increase out-of-plane emission

    A direct-laser-written heart-on-a-chip platform for generation and stimulation of engineered heart tissues

    Full text link
    In this dissertation, we first develop a versatile microfluidic heart-on-a-chip model to generate 3D-engineered human cardiac microtissues in highly-controlled microenvironments. The platform, which is enabled by direct laser writing (DLW), has tailor-made attachment sites for cardiac microtissues and comes with integrated strain actuators and force sensors. Application of external pressure waves to the platform results in controllable time-dependent forces on the microtissues. Conversely, oscillatory forces generated by the microtissues are transduced into measurable electrical outputs. After characterization of the responsivity of the transducers, we demonstrate the capabilities of this platform by studying the response of cardiac microtissues to prescribed mechanical loading and pacing. Next, we tune the geometry and mechanical properties of the platform to enable parametric studies on engineered heart tissues. We explore two geometries: a rectangular seeding well with two attachment sites, and a stadium-like seeding well with six attachment sites. The attachment sites are placed symmetrically in the longitudinal direction. The former geometry promotes uniaxial contraction of the tissues; the latter additionally induces diagonal fiber alignment. We systematically increase the length for both configurations and observe a positive correlation between fiber alignment at the center of the microtissues and tissue length. However, progressive thinning and ā€œneckingā€ is also observed, leading to the failure of longer tissues over time. We use the DLW technique to improve the platform, softening the mechanical environment and optimizing the attachment sites for generation of stable microtissues at each length and geometry. Furthermore, electrical pacing is incorporated into the platform to evaluate the functional dynamics of stable microtissues over the entire range of physiological heart rates. Here, we typically observe a decrease in active force and contraction duration as a function of frequency. Lastly, we use a more traditional ?TUG platform to demonstrate the effects of subthreshold electrical pacing on the rhythm of the spontaneously contracting cardiac microtissues. Here, we observe periodic M:N patterns, in which there are ? cycles of stimulation for every ? tissue contractions. Using electric field amplitude, pacing frequency, and homeostatic beating frequencies of the tissues, we provide an empirical map for predicting the emergence of these rhythms

    Electronic and photonic integrated circuits for millimeter wave-over-fiber

    No full text

    Cost-effective non-destructive testing of biomedical components fabricated using additive manufacturing

    Get PDF
    Biocompatible titanium-alloys can be used to fabricate patient-specific medical components using additive manufacturing (AM). These novel components have the potential to improve clinical outcomes in various medical scenarios. However, AM introduces stability and repeatability concerns, which are potential roadblocks for its widespread use in the medical sector. Micro-CT imaging for non-destructive testing (NDT) is an effective solution for post-manufacturing quality control of these components. Unfortunately, current micro-CT NDT scanners require expensive infrastructure and hardware, which translates into prohibitively expensive routine NDT. Furthermore, the limited dynamic-range of these scanners can cause severe image artifacts that may compromise the diagnostic value of the non-destructive test. Finally, the cone-beam geometry of these scanners makes them susceptible to the adverse effects of scattered radiation, which is another source of artifacts in micro-CT imaging. In this work, we describe the design, fabrication, and implementation of a dedicated, cost-effective micro-CT scanner for NDT of AM-fabricated biomedical components. Our scanner reduces the limitations of costly image-based NDT by optimizing the scanner\u27s geometry and the image acquisition hardware (i.e., X-ray source and detector). Additionally, we describe two novel techniques to reduce image artifacts caused by photon-starvation and scatter radiation in cone-beam micro-CT imaging. Our cost-effective scanner was designed to match the image requirements of medium-size titanium-alloy medical components. We optimized the image acquisition hardware by using an 80 kVp low-cost portable X-ray unit and developing a low-cost lens-coupled X-ray detector. Image artifacts caused by photon-starvation were reduced by implementing dual-exposure high-dynamic-range radiography. For scatter mitigation, we describe the design, manufacturing, and testing of a large-area, highly-focused, two-dimensional, anti-scatter grid. Our results demonstrate that cost-effective NDT using low-cost equipment is feasible for medium-sized, titanium-alloy, AM-fabricated medical components. Our proposed high-dynamic-range strategy improved by 37% the penetration capabilities of an 80 kVp micro-CT imaging system for a total x-ray path length of 19.8 mm. Finally, our novel anti-scatter grid provided a 65% improvement in CT number accuracy and a 48% improvement in low-contrast visualization. Our proposed cost-effective scanner and artifact reduction strategies have the potential to improve patient care by accelerating the widespread use of patient-specific, bio-compatible, AM-manufactured, medical components

    Towards A Graphene Chip System For Blood Clotting Disease Diagnostics

    Get PDF
    Point of care diagnostics (POCD) allows the rapid, accurate measurement of analytes near to a patient. This enables faster clinical decision making and can lead to earlier diagnosis and better patient monitoring and treatment. However, despite many prospective POCD devices being developed for a wide range of diseases this promised technology is yet to be translated to a clinical setting due to the lack of a cost-eļ¬€ective biosensing platform.This thesis focuses on the development of a highly sensitive, low cost and scalable biosensor platform that combines graphene with semiconductor fabrication tech-niques to create graphene ļ¬eld-eļ¬€ect transistors biosensor. The key challenges of designing and fabricating a graphene-based biosensor are addressed. This work fo-cuses on a speciļ¬c platform for blood clotting disease diagnostics, but the platform has the capability of being applied to any disease with a detectable biomarker.Multiple sensor designs were tested during this work that maximised sensor ef-ļ¬ciency and costs for diļ¬€erent applications. The multiplex design enabled diļ¬€erent graphene channels on the same chip to be functionalised with unique chemistry. The Inverted MOSFET design was created, which allows for back gated measurements to be performed whilst keeping the graphene channel open for functionalisation. The Shared Source and Matrix design maximises the total number of sensing channels per chip, resulting in the most cost-eļ¬€ective fabrication approach for a graphene-based sensor (decreasing cost per channel from Ā£9.72 to Ā£4.11).The challenge of integrating graphene into a semiconductor fabrication process is also addressed through the development of a novel vacuum transfer method-ology that allows photoresist free transfer. The two main fabrication processes; graphene supplied on the wafer ā€œPre-Transferā€ and graphene transferred after met-allisation ā€œPost-Transferā€ were compared in terms of graphene channel resistance and graphene end quality (defect density and photoresist). The Post-Transfer pro-cess higher quality (less damage, residue and doping, conļ¬rmed by Raman spec-troscopy).Following sensor fabrication, the next stages of creating a sensor platform involve the passivation and packaging of the sensor chip. Diļ¬€erent approaches using dielec-tric deposition approaches are compared for passivation. Molecular Vapour Deposi-tion (MVD) deposited Al2O3 was shown to produce graphene channels with lower damage than unprocessed graphene, and also improves graphene doping bringing the Dirac point of the graphene close to 0 V. The packaging integration of microļ¬‚uidics is investigated comparing traditional soft lithography approaches and the new 3D printed microļ¬‚uidic approach. Speciļ¬c microļ¬‚uidic packaging for blood separation towards a blood sampling point of care sensor is examined to identify the laminar approach for lower blood cell count, as a method of pre-processing the blood sample before sensing.To test the sensitivity of the Post-Transfer MVD passivated graphene sensor de-veloped in this work, real-time IV measurements were performed to identify throm-bin protein binding in real-time on the graphene surface. The sensor was function-alised using a thrombin speciļ¬c aptamer solution and real-time IV measurements were performed on the functionalised graphene sensor with a range of biologically relevant protein concentrations. The resulting sensitivity of the graphene sensor was in the 1-100 pg/ml concentration range, producing a resistance change of 0.2% per pg/ml. Speciļ¬city was conļ¬rmed using a non-thrombin speciļ¬c aptamer as the neg-ative control. These results indicate that the graphene sensor platform developed in this thesis has the potential as a highly sensitive POCD. The processes developed here can be used to develop graphene sensors for multiple biomarkers in the future

    Full stack development toward a trapped ion logical qubit

    Get PDF
    Quantum error correction is a key step toward the construction of a large-scale quantum computer, by preventing small infidelities in quantum gates from accumulating over the course of an algorithm. Detecting and correcting errors is achieved by using multiple physical qubits to form a smaller number of robust logical qubits. The physical implementation of a logical qubit requires multiple qubits, on which high fidelity gates can be performed. The project aims to realize a logical qubit based on ions confined on a microfabricated surface trap. Each physical qubit will be a microwave dressed state qubit based on 171Yb+ ions. Gates are intended to be realized through RF and microwave radiation in combination with magnetic field gradients. The project vertically integrates software down to hardware compilation layers in order to deliver, in the near future, a fully functional small device demonstrator. This thesis presents novel results on multiple layers of a full stack quantum computer model. On the hardware level a robust quantum gate is studied and ion displacement over the X-junction geometry is demonstrated. The experimental organization is optimized through automation and compressed waveform data transmission. A new quantum assembly language purely dedicated to trapped ion quantum computers is introduced. The demonstrator is aimed at testing implementation of quantum error correction codes while preparing for larger scale iterations.Open Acces
    • ā€¦
    corecore