378 research outputs found

    Mapping invasive plants using RPAS and remote sensing

    Get PDF
    The ability to accurately detect invasive plant species is integral in their management, treatment, and removal. This study focused on developing and evaluating RPAS-based methods for detecting invasive plant species using image analysis and machine learning and was conducted in two stages. First, supervised classification to identify the invasive yellow flag iris (Iris pseudacorus) was performed in a wetland environment using high-resolution raw imagery captured with an uncalibrated visible-light camera. Colour-thresholding, template matching, and de-speckling prior to training a random forest classifier are explored in terms of their benefits towards improving the resulting classification of YFI plants within each image. The impacts of feature selection prior to training are also explored. Results from this work demonstrate the importance of performing image processing and it was found that the application of colour thresholding and de-speckling prior to classification by a random forest classifier trained to identify patches of YFI using spectral and textural features provided the best results. Second, orthomosaicks generated from multispectral imagery were used to detect and predict the relative abundance of spotted knapweed (Centaurea maculosa) in a heterogeneous grassland ecosystem. Relative abundance was categorized in qualitative classes and validated through field-based plant species inventories. The method developed for this work, termed metapixel-based image analysis, segments orthomosaicks into a grid of metapixels for which grey-level co-occurrence matrix (GLCM)-based statistics can be computed as descriptive features. Using RPAS-acquired multispectral imagery and plant species inventories performed on 1m2 quadrats, a random forest classifier was trained to predict the qualitative degree of spotted knapweed ground-cover within each metapixel. Analysis of the performance of metapixel-based image analysis in this study suggests that feature optimization and the use of GLCM-based texture features are of critical importance for achieving an accurate classification. Additional work to further test the generalizability of the detection methods developed is recommended prior to deployment across multiple sites.remote sensingremotely piloted aircraft systemsRPASinvasive plant speciesmachine learnin

    Bio-Inspired Robotic Fish With Vision Based Target Tracking

    Get PDF
    The lionfish is an invasive species that out-competes and overcrowds native sh species along the eastern seaboard of the United States and down into the Caribbean. Lionfish populations are growing rapidly. Current methods of monitoring lionfish populations are costly and time intensive. A bio-inspired robotic fish was built to use as an autonomous lionfish tracking platform. Lionfish are tracked visually using an onboard processor. Five different computer vision methods for identification and tracking are proposed and discussed. These include: background subtraction, color tracking, mixture of Gaussian background subtraction, speeded up robust feature (SURF), and CamShift based tracking. Each of these methods were compared and their accuracy analyzed. CamShift based tracking is determined to be the most accurate for this application. Preliminary experiments for system identification and control design are discussed

    New Remote Sensing Methods for Detecting and Quantifying Forest Disturbance and Regeneration in the Eastern United States

    Get PDF
    Forest disturbances, such as wildfires, the southern pine beetle, and the hemlock woolly adelgid, affect millions of hectares of forest in North America with significant implications for forest health and management. This dissertation presents new methods to quantify and monitor disturbance through time in the forests of the eastern United States using remotely sensed imagery from the Landsat family of satellites, detect clouds and cloud-shadow in imagery, generate composite images from the clear-sky regions of multiple images acquired at different times, delineate the extents of disturbance events, identify the years in which they occur, and label those events with an agent and severity. These methods operate at a 30x30 m spatial resolution and a yearly temporal resolution. Overall accuracy for cloud and cloud-shadow detection is 98.7% and is significantly better than a leading method. Overall accuracy for designating a specific space and time as disturbed, stable, or regenerating is 85%, and accuracy for labeling disturbance events with a causal agent ranges from 42% to 90%, depending on agent, with overall accuracy, excluding samples marked as `uncertain\u27, of 81%. Due to the high spatial resolution of the imagery and resulting output, these methods are valuable for managers interested in monitoring specific forested areas. Additionally, these methods enable the discovery and quantification of forest dynamics at larger spatial scales in a way other datasets cannot. Applying these methods over the entire extent of the eastern United States highlands reveals significant differences in disturbance frequency by ecoregion, from less than 1% of forested area per year in the Central Appalachians, to over 5% in the Piedmont. Yearly variations from these means are substantial, with disturbance frequency being twice as high as the mean in some years. Additionally, these analyses reveal that some disturbance agents, such as the southern pine beetle, exhibit periodic dynamics. Finally, although these methods are applied here to the problem of forest disturbance in the eastern United States, the core innovations are easily extended to other locations or even to other applications of landscape change, such as vegetation succession, shifting coastlines, or urbanization

    Remote Sensing of Plant Biodiversity

    Get PDF
    This Open Access volume aims to methodologically improve our understanding of biodiversity by linking disciplines that incorporate remote sensing, and uniting data and perspectives in the fields of biology, landscape ecology, and geography. The book provides a framework for how biodiversity can be detected and evaluated—focusing particularly on plants—using proximal and remotely sensed hyperspectral data and other tools such as LiDAR. The volume, whose chapters bring together a large cross-section of the biodiversity community engaged in these methods, attempts to establish a common language across disciplines for understanding and implementing remote sensing of biodiversity across scales. The first part of the book offers a potential basis for remote detection of biodiversity. An overview of the nature of biodiversity is described, along with ways for determining traits of plant biodiversity through spectral analyses across spatial scales and linking spectral data to the tree of life. The second part details what can be detected spectrally and remotely. Specific instrumentation and technologies are described, as well as the technical challenges of detection and data synthesis, collection and processing. The third part discusses spatial resolution and integration across scales and ends with a vision for developing a global biodiversity monitoring system. Topics include spectral and functional variation across habitats and biomes, biodiversity variables for global scale assessment, and the prospects and pitfalls in remote sensing of biodiversity at the global scale

    Remote Sensing of Plant Biodiversity

    Get PDF
    At last, here it is. For some time now, the world has needed a text providing both a new theoretical foundation and practical guidance on how to approach the challenge of biodiversity decline in the Anthropocene. This is a global challenge demanding global approaches to understand its scope and implications. Until recently, we have simply lacked the tools to do so. We are now entering an era in which we can realistically begin to understand and monitor the multidimensional phenomenon of biodiversity at a planetary scale. This era builds upon three centuries of scientific research on biodiversity at site to landscape levels, augmented over the past two decades by airborne research platforms carrying spectrometers, lidars, and radars for larger-scale observations. Emerging international networks of fine-grain in-situ biodiversity observations complemented by space-based sensors offering coarser-grain imagery—but global coverage—of ecosystem composition, function, and structure together provide the information necessary to monitor and track change in biodiversity globally. This book is a road map on how to observe and interpret terrestrial biodiversity across scales through plants—primary producers and the foundation of the trophic pyramid. It honors the fact that biodiversity exists across different dimensions, including both phylogenetic and functional. Then, it relates these aspects of biodiversity to another dimension, the spectral diversity captured by remote sensing instruments operating at scales from leaf to canopy to biome. The biodiversity community has needed a Rosetta Stone to translate between the language of satellite remote sensing and its resulting spectral diversity and the languages of those exploring the phylogenetic diversity and functional trait diversity of life on Earth. By assembling the vital translation, this volume has globalized our ability to track biodiversity state and change. Thus, a global problem meets a key component of the global solution. The editors have cleverly built the book in three parts. Part 1 addresses the theory behind the remote sensing of terrestrial plant biodiversity: why spectral diversity relates to plant functional traits and phylogenetic diversity. Starting with first principles, it connects plant biochemistry, physiology, and macroecology to remotely sensed spectra and explores the processes behind the patterns we observe. Examples from the field demonstrate the rising synthesis of multiple disciplines to create a new cross-spatial and spectral science of biodiversity. Part 2 discusses how to implement this evolving science. It focuses on the plethora of novel in-situ, airborne, and spaceborne Earth observation tools currently and soon to be available while also incorporating the ways of actually making biodiversity measurements with these tools. It includes instructions for organizing and conducting a field campaign. Throughout, there is a focus on the burgeoning field of imaging spectroscopy, which is revolutionizing our ability to characterize life remotely. Part 3 takes on an overarching issue for any effort to globalize biodiversity observations, the issue of scale. It addresses scale from two perspectives. The first is that of combining observations across varying spatial, temporal, and spectral resolutions for better understanding—that is, what scales and how. This is an area of ongoing research driven by a confluence of innovations in observation systems and rising computational capacity. The second is the organizational side of the scaling challenge. It explores existing frameworks for integrating multi-scale observations within global networks. The focus here is on what practical steps can be taken to organize multi-scale data and what is already happening in this regard. These frameworks include essential biodiversity variables and the Group on Earth Observations Biodiversity Observation Network (GEO BON). This book constitutes an end-to-end guide uniting the latest in research and techniques to cover the theory and practice of the remote sensing of plant biodiversity. In putting it together, the editors and their coauthors, all preeminent in their fields, have done a great service for those seeking to understand and conserve life on Earth—just when we need it most. For if the world is ever to construct a coordinated response to the planetwide crisis of biodiversity loss, it must first assemble adequate—and global—measures of what we are losing

    Achieving sustainable development goals coupling earth observation data with machine learning

    Get PDF
    Tese de Doutoramento em Engenharia e Gestão Industrial, Universidade Lusíada, Vila Nova de Famalicão, 2021Exame público realizado em 09 de Junho de 2022The main purpose of this work is to assess and understand the achievement of Sustainable Development Goals by means of Earth Observation (EO) data and Machine Learning (ML) technologies. Thus, this study intends to promote and suggest the use of EO and ML in benefits to the Sustainable Development Goals (SDGs) to support and optimize the actual industry and field processes and moreover provide new insights (techniques) on EO approaches and applicability as well as ML techniques. A review on the Sustainable Development concept and its goals is presented followed by EO data and methods and its approaches relevant to this field, giving special attention to the contribution of ML methods and algorithms as well as their potential and capabilities to support the achievement of SDGs. Additionally, different ML approaches and techniques are reviewed (i.e., Classification and Regression techniques, Non-Binary Decision Tree (NBDT), and two novel methods are proposed, designated as: Random Forest built based on the Non-Binary Decision Tree (NBRF) and Fusion of techniques). Both developed methods are applied, optimized and validated to two case studies also aligned with specific SGDs: Case study I – Identification and mapping of healthy or infected crops, tackling SDGs 2, 8, 9 and 12; and Case study II - Deep-sea mining exploitation SDGs 8, 9, 12 and 14). Such is achieved by using data provided by European satellites or programs that allows to also contribute to the goals for Europe’s Space strategy. For Case study I, the parameters analysed to achieve the respective SDGs correspond to: several vegetation indices as well as the values of the spectral bands. Such parameters have been extracted by means of EO data (from Sentinel-2) and validated with different ML approaches. The results obtained from the different ML approaches suggest that for Case study I, the best classification technique (overall accuracy of 92.87%) as well as the best regression (Root mean square error of 0.148) corresponds to the Fusion of techniques All the applied techniques, however, show their applicability on this case study with good results, disregarding the NBDT which is the “weakest” one (best result on all tests: accuracy of 57.07%). For Case study II, the parameters analysed to achieve the respective SDGs correspond to the topography of the seafloor and, physical and biogeochemical ocean’s parameters. Such parameters have been extracted by means of EO data (from CMEMS and GEBCO) and validated with different ML approaches. The results of these approaches suggests that the best technique corresponds to the Fusion of techniques with a root mean square error of 0.196. However, not all the techniques proved to be appropriated, where the NBDT present the worst results (best result on all tests: accuracy 60.62%). Overall, it is observed that EO plays a key role in the monitoring and achievement of the SDGs given its cost-effectiveness pertaining to data acquisition on all scales and information richness, and the success of ML upon EO data analysis. The applicability of ML techniques allied to EO data has proven, by both case studies, that can contribute to the SDGs and can be extrapolated to other applications and fields. Keywords: Sustainable Development Goals; Earth Observation; Europe Space Strategy; Machine Learning; Deep-sea Mining; Agriculture

    Local Binary Pattern based algorithms for the discrimination and detection of crops and weeds with similar morphologies

    Get PDF
    In cultivated agricultural fields, weeds are unwanted species that compete with the crop plants for nutrients, water, sunlight and soil, thus constraining their growth. Applying new real-time weed detection and spraying technologies to agriculture would enhance current farming practices, leading to higher crop yields and lower production costs. Various weed detection methods have been developed for Site-Specific Weed Management (SSWM) aimed at maximising the crop yield through efficient control of weeds. Blanket application of herbicide chemicals is currently the most popular weed eradication practice in weed management and weed invasion. However, the excessive use of herbicides has a detrimental impact on the human health, economy and environment. Before weeds are resistant to herbicides and respond better to weed control strategies, it is necessary to control them in the fallow, pre-sowing, early post-emergent and in pasture phases. Moreover, the development of herbicide resistance in weeds is the driving force for inventing precision and automation weed treatments. Various weed detection techniques have been developed to identify weed species in crop fields, aimed at improving the crop quality, reducing herbicide and water usage and minimising environmental impacts. In this thesis, Local Binary Pattern (LBP)-based algorithms are developed and tested experimentally, which are based on extracting dominant plant features from camera images to precisely detecting weeds from crops in real time. Based on the efficient computation and robustness of the first LBP method, an improved LBP-based method is developed based on using three different LBP operators for plant feature extraction in conjunction with a Support Vector Machine (SVM) method for multiclass plant classification. A 24,000-image dataset, collected using a testing facility under simulated field conditions (Testbed system), is used for algorithm training, validation and testing. The dataset, which is published online under the name “bccr-segset”, consists of four subclasses: background, Canola (Brassica napus), Corn (Zea mays), and Wild radish (Raphanus raphanistrum). In addition, the dataset comprises plant images collected at four crop growth stages, for each subclass. The computer-controlled Testbed is designed to rapidly label plant images and generate the “bccr-segset” dataset. Experimental results show that the classification accuracy of the improved LBP-based algorithm is 91.85%, for the four classes. Due to the similarity of the morphologies of the canola (crop) and wild radish (weed) leaves, the conventional LBP-based method has limited ability to discriminate broadleaf crops from weeds. To overcome this limitation and complex field conditions (illumination variation, poses, viewpoints, and occlusions), a novel LBP-based method (denoted k-FLBPCM) is developed to enhance the classification accuracy of crops and weeds with similar morphologies. Our contributions include (i) the use of opening and closing morphological operators in pre-processing of plant images, (ii) the development of the k-FLBPCM method by combining two methods, namely, the filtered local binary pattern (LBP) method and the contour-based masking method with a coefficient k, and (iii) the optimal use of SVM with the radial basis function (RBF) kernel to precisely identify broadleaf plants based on their distinctive features. The high performance of this k-FLBPCM method is demonstrated by experimentally attaining up to 98.63% classification accuracy at four different growth stages for all classes of the “bccr-segset” dataset. To evaluate performance of the k-FLBPCM algorithm in real-time, a comparison analysis between our novel method (k-FLBPCM) and deep convolutional neural networks (DCNNs) is conducted on morphologically similar crops and weeds. Various DCNN models, namely VGG-16, VGG-19, ResNet50 and InceptionV3, are optimised, by fine-tuning their hyper-parameters, and tested. Based on the experimental results on the “bccr-segset” dataset collected from the laboratory and the “fieldtrip_can_weeds” dataset collected from the field under practical environments, the classification accuracies of the DCNN models and the k-FLBPCM method are almost similar. Another experiment is conducted by training the algorithms with plant images obtained at mature stages and testing them at early stages. In this case, the new k-FLBPCM method outperformed the state-of-the-art CNN models in identifying small leaf shapes of canola-radish (crop-weed) at early growth stages, with an order of magnitude lower error rates in comparison with DCNN models. Furthermore, the execution time of the k-FLBPCM method during the training and test phases was faster than the DCNN counterparts, with an identification time difference of approximately 0.224ms per image for the laboratory dataset and 0.346ms per image for the field dataset. These results demonstrate the ability of the k-FLBPCM method to rapidly detect weeds from crops of similar appearance in real time with less data, and generalize to different size plants better than the CNN-based methods

    Journal of environmental geography : Vol. XIII. No 3-4.

    Get PDF

    Sustainable Agriculture and Advances of Remote Sensing (Volume 1)

    Get PDF
    Agriculture, as the main source of alimentation and the most important economic activity globally, is being affected by the impacts of climate change. To maintain and increase our global food system production, to reduce biodiversity loss and preserve our natural ecosystem, new practices and technologies are required. This book focuses on the latest advances in remote sensing technology and agricultural engineering leading to the sustainable agriculture practices. Earth observation data, in situ and proxy-remote sensing data are the main source of information for monitoring and analyzing agriculture activities. Particular attention is given to earth observation satellites and the Internet of Things for data collection, to multispectral and hyperspectral data analysis using machine learning and deep learning, to WebGIS and the Internet of Things for sharing and publishing the results, among others

    Componentes e pontos de quebra em séries temporais na análise de imagens de sensoriamento remoto

    Get PDF
    Orientador: Ricardo da Silva TorresDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: A detecção e caracterização de mudanças temporais são indicadores cruciais no processo de compreensão da maneira como mecanismos complexos funcionam e evoluem. Técnicas e imagens de sensoriamento remoto têm sido amplamente empregadas nas últimas décadas com objetivo de detectar e investigar mudanças temporais na superfície terrestre. Tal detecção em dados de séries temporais é passível de ser refinada ainda mais isolando-se as componentes aditivas de tendência e sazonalidade do ruído subjacente. Este trabalho investiga, em particular, o método Breaks For Additive Season and Trend (BFAST) para a análise, decomposição e detecção de pontos de quebra em séries temporais associadas a dados de sensoriamento remoto. Os outputs do método são, então, utilizados em três distintas ¿ mas altamente interconectadas ¿ linhas de pesquisa: em uma melhor compreensão de fenômenos climáticos; na correlação com dados de distúrbios antropológicos; e em problemas de classificação usando funções de dissimilaridade descobertas por um framework evolucionário baseado em Programação Genética (GP). Experimentos realizados demonstram que a decomposição e pontos de quebra produziram resultados efetivos quando aplicados aos estudos com dados ecológicos, mas não foram capazes de melhorar os resultados de classificação quando comparados ao uso das séries brutas. As realizações nesses três contextos também culminaram na criação de duas ferramentas de análise de séries temporais com código aberto baseadas na web, sendo que uma delas foi tão bem aceita pela comunidade-alvo, que atualmente encontra-se integrada em uma plataforma privada de computação em nuvemAbstract: Detecting and characterizing temporal changes are crucial indicators in the process of understanding how complex mechanisms work and evolve. The use of remote sensing images and techniques has been broadly employed over the past decades in order to detect and investigate temporal changes on the Earth surface. Such change detection in time series data may be even further refined by isolating the additive long-term (trend) and cyclical (seasonal) components from the underlying noise. This work investigates the particular Breaks For Additive Season and Trend (BFAST) method for the analysis, decomposition, and breakpoint detection of time series associated with remote sensing data. The derived outputs from that method are, then, used in three distinct ¿ but highly interconnected ¿ research venues: in a better comprehension of climatic phenomena; in the correlation to human-induced disturbances data; and in data classification problems using time series dissimilarity functions discovered by a Genetic-Programming-(GP)-based evolutionary framework. Performed experiments show that decomposition and breakpoints produced insightful and effective results when applied to the ecological data studies, but could not further improve the classification results when compared to its raw time series counterpart. The achievements in those three contexts also led to the creation of two open-source web-based time series analysis tools. One of those tools was so well received by the target community, that it is currently integrated into a private cloud computing platformMestradoCiência da ComputaçãoMestre em Ciência da Computação132847/2015-92015/02105-0CNPQFAPES
    corecore