6,301 research outputs found

    Modelling the time-varying cell capacity in LTE networks

    Full text link
    In wireless orthogonal frequency-division multiple access (OFDMA) based networks like Long Term Evolution (LTE) or Worldwide Interoperability for Microwave Access (WiMAX) a technique called adaptive modulation and coding (AMC) is applied. With AMC, different modulation and coding schemes (MCSs) are used to serve different users in order to maximise the throughput and range. The used MCS depends on the quality of the radio link between the base station and the user. Data is sent towards users with a good radio link with a high MCS in order to utilise the radio resources more efficiently while a low MCS is used for users with a bad radio link. Using AMC however has an impact on the cell capacity as the quality of a radio link varies when users move around; this can even lead to situations where the cell capacity drops to a point where there are too little radio resources to serve all users. AMC and the resulting varying cell capacity notably has an influence on admission control (AC). AC is the algorithm that decides whether new sessions are allowed to a cell or not and bases its decisions on, amongst others, the cell capacity. The analytical model that is developed in this paper models a cell with varying capacity caused by user mobility using a continuous -time Markov chain (CTMC). The cell is divided into multiple zones, each corresponding to the area in which data is sent towards users using a certain MCS and transitions of users between these zones are considered. The accuracy of the analytical model is verified by comparing the results obtained with it to results obtained from simulations that model the user mobility more realistically. This comparison shows that the analytical model models the varying cell capacity very accurately; only under extreme conditions differences between the results are noticed. The developed analytical and simulation models are then used to investigate the effects of a varying cell capacity on AC. Also, an optimisation algorithm that adapts the parameter of the AC algorithm which determines the amount of resources that are reserved in order to mitigate the effects of the varying cell capacity is studied using the models. Updating the parameter of the AC algorithm is done by reacting to certain triggers that indicate good or bad performance and adapt the parameters of the AC algorithm accordingly. Results show that using this optimisation algorithm improves the quality of service (QoS) that is experienced by the users.This work was partially supported by the Spanish Government through project TIN2010-21378-C02-02 and contract BES-2007-15030.Sas, B.; Bernal Mor, E.; Spaey, K.; Pla, V.; Blondia, C.; Martínez Bauset, J. (2014). Modelling the time-varying cell capacity in LTE networks. Telecommunication Systems. 55(2):299-313. https://doi.org/10.1007/s11235-013-9782-2S2993135523GPP (2010). 3GPP TR 36.213: Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC); Physical layer procedures, June 2010.3GPP (2010). 3GPP TR 36.942: Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC); Radio Frequency (RF) system scenarios, September 2010.Al-Rawi, M., & Jäntti, R. (2009). Call admission control with active link protection for opportunistic wireless networks. Telecommunications Systems, 41(1), 13–23.Bhatnagar, S., & Reddy, B.B.I. (2005). Optimal threshold policies for admission control in communication networks via discrete parameter stochastic approximation. Telecommunications Systems, 29(1), 9–31.Camp, T., Boleng, J., & Davies, V. (2002). A survey of mobility models for ad hoc network research. Wireless Communications and Mobile Computing, 2(5), 483–502.E3. ict-e3.eu.Elayoubi, S.-E., & Chahed, T. (2005). Admission control in the downlink of WCDMA/UMTS. In LNCS: Vol. 3427. Mobile and wireless systems (pp. 136–151).Garcia, D., Martinez, J., & Pla, V. (2005). Admission control policies in multiservice cellular networks: optimum configuration and sensitivity. In G. Kotsis, & O. Spaniol (Eds.), Lecture notes in computer science: Vol. 3427. Wireless systems and mobility in next generation Internet (pp. 121–135).Guo, J., Liu, F., & Zhu, Z. (2007). Estimate the call duration distribution parameters in GSM system based on K-L divergence method. In International conference on wireless communications, networking and mobile computing (pp. 2988–2991), Shanghai, China, September 2007.Hossain, M., Hassan, M., & Sirisena, H. R. (2004). Adaptive resource management in mobile wireless networks using feedback control theory. Telecommunications Systems, 24(3–4), 401–415.Jeong, S.S., Han, J.A., & Jeon, W.S. (2005). Adaptive connection admission control scheme for high data rate mobile networks. In IEEE 62nd Vehicular technology conference, 2005. VTC-2005-Fall (Vol. 4, pp. 2607–2611).Kim, D.K., Griffith, D., & Golmie, N. (2010). A novel ring-based performance analysis for call admission control in wireless networks. IEEE Communications Letters, 14(4), 324–326.Latouche, G., & Ramaswami, V. (1999). Introduction to matrix analytic methods in stochastic modeling. ASA-SIAM. Baltimore: Philadelphia.MONOTAS. http://www.macltd.com/monotas .Neuts, M. (1981). Matrix-geometric solutions in stochastic models: an algorithmic approach. Baltimore: The Johns Hopkins University Press.NGMN. NGMN Radio Access Performance Evaluation Methodology, January 2008.NGMN. www.ngmn.org .Prehofer, C., & Bettstetter, C. (2005). Self-organization in communication networks: principles and design paradigms. IEEE Communications Magazine, 43(7), 78–85.Ramjee, R., Nagarajan, R., & Towsley, D. (1997). On optimal call admission control in cellular networks. Wireless Networks, 3(1), 29–41.Siwko, J., & Rubin, I. (2001). Call admission control for capacity-varying networks. Telecommunications Systems, 16(1–2), 15–40.SOCRATES. www.fp7-socrates.eu .Spaey, K., Sas, B., & Blondia, C. (2010). Self-optimising call admission control for LTE downlink. In COST 2100 TD(10)10056, Joint Workshop COST 2100 SWG 3.1 & FP7-ICT-SOCRATES, Athens, Greece.Spilling, A. G., Nix, A. R., Beach, M. A., & Harrold, T. J. (2000). Self-organisation in future mobile communications. Electronics & Communication Engineering Journal, 3, 133

    Adaptive stochastic radio access selection scheme for cellular-WLAN heterogeneous communication systems

    Get PDF
    This study proposes a novel adaptive stochastic radio access selection scheme for mobile users in heterogeneous cellular-wireless local area network (WLAN) systems. In this scheme, a mobile user located in dual coverage area randomly selects WLAN with probability of ω when there is a need for downloading a chunk of data. The value of ω is optimised according to the status of both networks in terms of network load and signal quality of both cellular and WLAN networks. An analytical model based on continuous time Markov chain is proposed to optimise the value of ω and compute the performance of proposed scheme in terms of energy efficiency, throughput, and call blocking probability. Both analytical and simulation results demonstrate the superiority of the proposed scheme compared with the mainstream network selection schemes: namely, WLAN-first and load balancing

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future

    Wireless Heterogeneous Networks and Next Generation Internet

    Get PDF
    The recent advances in wireless access technologies as well as the increasing number of mobile applications have made Wireless Internet a reality. A wide variety of bandwidth demanding services including high speed data delivery and multimedia communication have been materialized through the convergence of the next generation Internet and heterogeneous wireless networks. However, providing even higher bandwidth and richer applications necessitates a fundamental understanding of wireless Internet architecture and the interactions between heterogeneous users. Consequently, fundamental advances in many concepts of the wireless Internet are required for the ultimate goal of communication anytime anywhere. This special issue of the ACM Mobile Networks and Applications Journal is dedicated to the recent advances in the area of Wireless Internet. We accepted 10 papers out of 59 submissions from all over the world with a 17% acceptance rate. Papers describing management schemes, protocols, models, evaluation methods, and experimental studies of Wireless Internet are included in this special issue to provide a broad view of recent advances in this field

    A survey of self organisation in future cellular networks

    Get PDF
    This article surveys the literature over the period of the last decade on the emerging field of self organisation as applied to wireless cellular communication networks. Self organisation has been extensively studied and applied in adhoc networks, wireless sensor networks and autonomic computer networks; however in the context of wireless cellular networks, this is the first attempt to put in perspective the various efforts in form of a tutorial/survey. We provide a comprehensive survey of the existing literature, projects and standards in self organising cellular networks. Additionally, we also aim to present a clear understanding of this active research area, identifying a clear taxonomy and guidelines for design of self organising mechanisms. We compare strength and weakness of existing solutions and highlight the key research areas for further development. This paper serves as a guide and a starting point for anyone willing to delve into research on self organisation in wireless cellular communication networks

    Joint Dynamic Radio Resource Allocation and Mobility Load Balancing in 3GPP LTE Multi-Cell Network

    Get PDF
    Load imbalance, together with inefficient utilization of system resource, constitute major factors responsible for poor overall performance in Long Term Evolution (LTE) network. In this paper, a novel scheme of joint dynamic resource allocation and load balancing is proposed to achieve a balanced performance improvement in 3rd Generation Partnership Project (3GPP) LTE Self-Organizing Networks (SON). The new method which aims at maximizing network resource efficiency subject to inter-cell interference and intra-cell resource constraints is implemented in two steps. In the first step, an efficient resource allocation, including user scheduling and power assignment, is conducted in a distributed manner to serve as many users in the whole network as possible. In the second step, based on the resource allocation scheme, the optimization objective namely network resource efficiency can be calculated and load balancing is implemented by switching the user that can maximize the objective function. Lagrange Multipliers method and heuristic algorithm are used to resolve the formulated optimization problem. Simulation results show that our algorithm achieves better performance in terms of user throughput, fairness, load balancing index and unsatisfied user number compared with the traditional approach which takes resource allocation and load balancing into account, respectively
    • …
    corecore