370 research outputs found

    A Low-Voltage Electronically Tunable MOSFET-C Voltage-Mode First-Order All-Pass Filter Design

    Get PDF
    This paper presents a simple electronically tunable voltage-mode first-order all-pass filter realization with MOSFET-C technique. In comparison to the classical MOSFET-C filter circuits that employ active elements including large number of transistors the proposed circuit is only composed of a single two n-channel MOSFET-based inverting voltage buffer, three passive components, and one NMOS-based voltage-controlled resistor, which is with advantage used to electronically control the pole frequency of the filter in range 103 kHz to 18.3 MHz. The proposed filter is also very suitable for low-voltage operation, since between its supply rails it uses only two MOSFETs. In the paper the effect of load is investigated. In addition, in order to suppress the effect of non-zero output resistance of the inverting voltage buffer, two compensation techniques are also introduced. The theoretical results are verified by SPICE simulations using PTM 90 nm level-7 CMOS process BSIM3v3 parameters, where +/- 0.45 V supply voltages are used. Moreover, the behavior of the proposed filter was also experimentally measured using readily available array transistors CD4007UB by Texas Instruments

    Realization of Low-Voltage Modified CBTA and Design of Cascadable Current-Mode All-Pass Filter

    Get PDF
    In this paper, a low voltage modified current backward transconductance amplifier (MCBTA) and a novel first-order current-mode (CM) all-pass filter are presented. The MCBTA can operate with ±0.9 V supply voltage and the total power consumption of MCBTA is 1.27 mW. The presented all-pass filter employs single MCBTA, a grounded resistor and a grounded capacitor. The circuit possesses low input and high output impedances which make it ideal for current-mode systems. The presented all-pass filter circuit can be made electronically tunable due to the bias current of the MCBTA. Non-ideal study along with simulation results are given for validation purpose. Further, an nth-order cascadable all-pass filter is also presented. It uses n MCBTAs, n grounded resistors and n grounded capacitors. The performance of the proposed circuits is demonstrated by using PSPICE simulations based on the 0.18 µm TSMC level-7 CMOS technology parameters

    All-pass section with high gain opportunity

    Get PDF
    Minaei, Shahram (Dogus Author) -- Conference full title: 33rd International Conference on Telecommunications and Signal Processing, TSP 2010; Baden near Vienna; Austria; 17 August 2010 through 20 August 2010 -- Paper published in Radioengineering, 20 (1) pp. 3-9. Fultext accessible via https://hdl.handle.net/11376/1383In this paper, a new circuit configuration for realizing voltage-mode (VM) all-pass section (APS) is presented. The circuit is cascadable with other VM circuits because of its high input and low output impedances. It consists of two differential difference current conveyors (DDCCs), one grounded resistor and one grounded capacitor. The proposed circuit can be slightly changed by using two additional grounded resistors to provide high gain. Moreover, a quadrature oscillator with minimum number of active and passive elements is derived from the proposed APS. SPICE simulations are performed to verify the theory.Motorol

    All-Pass Sections with High Gain Opportunity

    Get PDF
    In this paper, two new circuits for realizing firstorder voltage-mode (VM) all-pass section (APS) with variable gain are presented. The first proposed filter uses a single differential difference current conveyor (DDCC), one grounded capacitor and three resistors. The second proposed filter consists of two DDCCs, three grounded resistors and one grounded capacitor. It provides highinput and low-output impedances and can provide high gain. Both of the proposed circuits do not require any element matching condition. Moreover, oscillator circuits with minimum number of active and passive elements are derived from the proposed APSs. The proposed circuits are tested experimentally or by simulation using SPICE program to confirm the theory

    Realization of analog signal processing modules using carbon nanotube field effect transistors

    Get PDF
    This thesis presents the realization and performance analysis of several carbon nanotube field effect transistor (CNTFET) based analog signal processing (ASP) modules. CNTFET is predicted as a possible successor to conventional silicon complementary metal oxide semiconductor (CMOS), which has reached its scaling limits. The CMOS based ASP modules face significant challenges at deep nanoscale, resulting in severe performance degradations due to short channel effects. The main goal of this work is to realize CNTFET active building blocks (ABBs), and then to utilize these ABBs for realization of low-voltage, low-power, and high-frequency ASP modules. The proposed ABBs have low power dissipation, reduced parasitic components, and minimum number of CNTFETs. The proposed modules are active inductor (AI), first-order phase shifter, and second-order phase shifter. This research proposes a new CNTFET based grounded AI (GAI) circuit with high self-resonance frequency (SRF), wide tunable inductance range, and high quality factor. Simulation results demonstrate that the GAI offers tunable inductance from 4.4 nH to 287.4 nH with a maximum SRF of 101 GHz. It consumes very low power dissipation of 0.337 mW. In comparison to high performance available GAI circuits, the proposed GAI shows 34% reduction in power dissipation and nine times higher SRF. A highfrequency low-noise amplifier (LNA) circuit is also designed by utilizing the proposed GAI to showcase its application. The simulation result shows high frequency bandwidth of 17.5 GHz to 57 GHz, 15.9 dB maximum voltage gain, better than -10 dB input matching, and less than 3 dB noise figure. This research also proposes a compact wideband first-order phase shifter (FOPS) and active-only FOPS (AOFOPS). Simulation results demonstrate the FOPS has a tunable pole frequency range between 1.913 GHz and 40.2 GHz, input and output voltage noises of 4.402 nV/VHz and 4.414 nV/VH z respectively, and power dissipation of 0.4862 mW. The AOFOPS circuit also offers a wide tunable range of pole frequency between 34.2 GHz to 56.4 GHz with input noise and output noise of 6.822 nV/VHz and 6.761 nV/VHz respectively, and power dissipation of only 0.0338 mW. The AOFOPS dissipates 12.40 times less power in comparison to state-of-art FOPS circuits. This work also proposes active-only second-order phase shifter. The proposed circuit provides a tunable pole frequency between 16.2 GHz to 42.5 GHz, with input and output noises of 21.698 nV/VHz and 21.593 nV/VHz respectively, while consuming 0.2256 mW power. All circuit performances are verified through HSPICE simulation by utilizing the Stanford CNTFET model at 16 nm technology node with supply voltage of 0.7 V

    Voltage-Mode All-Pass Filters Using Universal Voltage Conveyor and MOSFET-Based Electronic Resistors

    Get PDF
    The paper presents two novel realizations of voltage-mode first-order all-pass filters. Both circuits use single universal voltage conveyor (UVC), single capacitor, and two grounded resistors. Using the two NMOS transistors-based realizations of the electronic resistor with two symmetrical power supplies, presented all-pass filter circuits can be easily made electronically tunable. Proposed filter structures provide both inverting and non-inverting outputs at the same configuration simultaneously and they have high-input and low-output impedances that are desired for easy cascading in voltage-mode operations. The nonidealities of the proposed circuits are also analyzed and compared. The theoretical results of both circuits are verified by SPICE simulations using TSMC 0.35 μm CMOS process parameters. Based on the evaluation, the behavior of one of the circuits featuring better performance was also experimentally measured using the UVC-N1C 0520 integrated circuit

    Realization of first-order current-mode filters with low number of MOS transistors

    Get PDF
    In this paper, a new current-mode (CM) circuit for realizing all of the first-order filter responses is suggested. The proposed configuration contains low number of components, only two NMOS transistors both operating in saturation region, two capacitors and two resistors. Major advantages of the presented circuit are low voltage, low noise and high linearity. The proposed filter circuit can simultaneously provide both inverting and non-inverting first-order low-pass, high-pass and all-pass filter responses. Computer simulation results achieved through SPICE tool and experimental results are given as examples to demonstrate performance and effectiveness of the proposed topology.In this paper, a new current-mode (CM) circuit for realizing all of the first-order filter responses is suggested. The proposed configuration contains low number of components, only two NMOS transistors both operating in saturation region, two capacitors and two resistors. Major advantages of the presented circuit are low voltage, low noise and high linearity. The proposed filter circuit can simultaneously provide both inverting and non-inverting first-order low-pass, high-pass and all-pass filter responses. Computer simulation results achieved through SPICE tool and experimental results are given as examples to demonstrate performance and effectiveness of the proposed topology

    Current Conveyor All-Pass Sections: Brief Review and Novel Solution

    Get PDF
    This study relates to the review of an important analog electronic function in form of all-pass filter’s realization using assorted current conveyor types and their relative performances, which resulted in a novel solution based on a new proposed active element. The study encompasses notable proposals during last the decade or more, and provides a platform for a broader future survey on the topic for enhancing the knowledge penetration amongst the researchers in the specified field. A new active element named EXCCII (Extra-X second generation current conveyor) with buffered output is found in the study along with its use in a new first-order all-pass section, with possible realization using commercially available IC (AD-844) and results
    corecore