3,151 research outputs found

    A novel blind channel estimation for a 2x2 MIMO system

    Get PDF
    A novel blind channel estimation method based on a simple coding scheme for a 2 by 2 multiple input multi-ple output (MIMO) system is described. The proposed algorithm is easy to implement in comparison with conventional blind estimation algorithms, as it is able to recover the channel matrix without performing sin-gular value decomposition (SVD) or eigenvalue decomposition (EVD). The block coding scheme accompa-nying the proposed estimation approach requires only a block encoder at the transmitter without the need of using the decoder at the receiver. The proposed block coding scheme offers the full coding rate and reduces the noise power to half of its original value. It eliminates the phase ambiguity using only one additional pilot sequence

    Blind identification of possibly under-determined convolutive MIMO systems

    Get PDF
    Blind identiĀÆcation of a Linear Time Invariant (LTI) Multiple-Input Multiple-Output (MIMO) system is of great importance in many applications, such as speech processing, multi-access communication, multi-sensor sonar/radar systems, and biomedical applications. The objective of blind identiĀÆcation for a MIMO system is to identify an unknown system, driven by Ni unobservable inputs, based on the No system outputs. We ĀÆrst present a novel blind approach for the identiĀÆcation of a over-determined (No Āø Ni) MIMO system driven by white, mutually independent unobservable inputs. Samples of the system frequency response are obtained based on Parallel Factorization (PARAFAC) of three- or four-way tensors constructed respectively based on third- or fourth-order cross-spectra of the system outputs. We show that the information available in the higher-order spectra allows for the system response to be identiĀÆed up to a constant scaling and permutation ambiguities and a linear phase ambiguity. Important features of the proposed approaches are that they do not require channel length information, need no phase unwrapping, and unlike the majority of existing methods, need no pre-whitening of the system outputs.While several methods have been proposed to blindly identify over-determined convolutive MIMO systems, very scarce results exist for under-determined (No < Ni) case, all of which refer to systems that either have some special structure, or special No, Ni values. We propose a novel approach for blind identiĀÆcation of under-determined convolutive MIMO systems of general dimensions. As long as min(No;Ni) Āø 2, we can always ĀÆnd the appropriate order of statistics that guarantees identiĀÆability of the system response within trivial ambiguities. We provide the description of the class of identiĀÆable MIMO systems for a certain order of statistics K, and an algorithm to reach the solution.Finally we propose a novel approach for blind identiĀÆcation and symbol recovery of a distributed antenna system with multiple carrier-frequency oĀ®sets (CFO), arising due to mismatch between the oscillators of transmitters and receivers. The received base-band signal is over-sampled, and its polyphase components are used to formulate a virtual MIMO problem. By applying blind MIMO system estimation techniques, the system response is estimated and used to subsequently decouple the users and transform the multiple CFOs estimation problem into a set of independent single CFO estimation problems.Ph.D., Electrical Engineering -- Drexel University, 200

    Optimum Receiver Design for MIMO Fading Channels

    Get PDF
    This thesis describes the analytical design and the performance analysis of optimum receivers for Multiple Input - Multiple Output (MIMO) fading channels. In particular, a novel Optimum Receiver for separately-correlated MIMO channels is proposed. This novel pilot-aided receiver is able to process jointly the pilot symbols, transmitted within each time frame as a preamble, and the information symbols and to decode the transmitted data in a single step, avoiding the explicit estimation of the channel matrix. The optimum receiver is designed for the following two scenarios, corresponding to different transmission schemes and channel models: 1) Narrowband Rician fading MIMO channel with spatial separate correlation; 2) MIMO-OFDM Rician fading channel with space and frequency separate correlation. For each system the performance of the optimum receiver is studied in detail under different channel conditions. The optimum receiver is compared with: - the ideal Genie Receiver, knowing perfectly the Channel State Information (CSI) at no cost; - the standard Mismatched Receiver, estimating the CSI in a first step, then using this imperfect estimate in the ideal channel metric. Since the optimum receiver requires the knowledge of the channel parameters for the decoding process, an estimation algorithm is proposed and tested. Moreover, a complexity analysis is carried out and methods for complexity reduction are proposed. Furthermore, the narrowband receiver is tested in realistic conditions using measured channel samples. Finally, a blind version of the receiver is propose

    Two-tier channel estimation aided near-capacity MIMO transceivers relying on norm-based joint transmit and receive antenna selection

    No full text
    We propose a norm-based joint transmit and receive antenna selection (NBJTRAS) aided near-capacity multiple-input multiple-output (MIMO) system relying on the assistance of a novel two-tier channel estimation scheme. Specifically, a rough estimate of the full MIMO channel is first generated using a low-complexity, low-training-overhead minimum mean square error based channel estimator, which relies on reusing a modest number of radio frequency (RF) chains. NBJTRAS is then carried out based on this initial full MIMO channel estimate. The NBJTRAS aided MIMO system is capable of significantly outperforming conventional MIMO systems equipped with the same modest number of RF chains, while dispensing with the idealised simplifying assumption of having perfectly known channel state information (CSI). Moreover, the initial subset channel estimate associated with the selected subset MIMO channel matrix is then used for activating a powerful semi-blind joint channel estimation and turbo detector-decoder, in which the channel estimate is refined by a novel block-of-bits selection based soft-decision aided channel estimator (BBSB-SDACE) embedded in the iterative detection and decoding process. The joint channel estimation and turbo detection-decoding scheme operating with the aid of the proposed BBSB-SDACE channel estimator is capable of approaching the performance of the near-capacity maximumlikelihood (ML) turbo transceiver associated with perfect CSI. This is achieved without increasing the complexity of the ML turbo detection and decoding process
    • ā€¦
    corecore