153 research outputs found

    Hand-based multimodal identification system with secure biometric template storage

    Get PDF
    WOS:000304107200001This study proposes a biometric system for personal identification based on three biometric characteristics from the hand, namely: the palmprint, finger surfaces and hand geometry. A protection scheme is applied to the biometric template data to guarantee its revocability, security and diversity among different biometric systems. An error-correcting code (ECC), a cryptographic hash function (CHF) and a binarisation module are the core of the template protection scheme. Since the ECC and CHF operate on binary data, an additional feature binarisation step is required. This study proposes: (i) a novel identification architecture that uses hand geometry as a soft biometric to accelerate the identification process and ensure the system's scalability; and (ii) a new feature binarisation technique that guarantees that the Hamming distance between transformed binary features is proportional to the difference between their real values. The proposed system achieves promising recognition and speed performances on two publicly available hand image databases.info:eu-repo/semantics/acceptedVersio

    Template Protection For 3D Face Recognition

    Get PDF
    The human face is one of the most important biometric modalities for automatic authentication. Three-dimensional face recognition exploits facial surface information. In comparison to illumination based 2D face recognition, it has good robustness and high fake resistance, so that it can be used in high security areas. Nevertheless, as in other common biometric systems, potential risks of identity theft, cross matching and exposure of privacy information threaten the security of the authentication system as well as the user\\u27s privacy. As a crucial supplementary of biometrics, the template protection technique can prevent security leakages and protect privacy. In this chapter, we show security leakages in common biometric systems and give a detailed introduction on template protection techniques. Then the latest results of template protection techniques in 3D face recognition systems are presented. The recognition performances as well as the security gains are analyzed

    Privacy and Security Assessment of Biometric Template Protection

    Full text link

    LEARNING-FREE DEEP FEATURES FOR MULTISPECTRAL PALM-PRINT CLASSIFICATION

    Get PDF
    The feature extraction step is a major and crucial step in analyzing and understanding raw data as it has a considerable impact on the system accuracy. Unfortunately, despite the very acceptable results obtained by many handcrafted methods, they can have difficulty representing the features in the case of large databases or with strongly correlated samples. In this context, we proposed a new, simple and lightweight method for deep feature extraction. Our method can be configured to produce four different deep features, each controlled to tune the system accuracy. We have evaluated the performance of our method using a multispectral palmprint based biometric system and the experimental results, using the CASIA database, have shown that our method has high accuracy compared to many current handcrafted feature extraction methods and many well known deep learning based methods

    Biometric signature verification system based on freeman chain code and k-nearest neighbor

    Get PDF
    Signature is one of human biometrics that may change due to some factors, for example age, mood and environment, which means two signatures from a person cannot perfectly matching each other. A Signature Verification System (SVS) is a solution for such situation. The system can be decomposed into three stages: data acquisition and preprocessing, feature extraction and verification. This paper presents techniques for SVS that uses Freeman chain code (FCC) as data representation. Before extracting the features, the raw images will undergo preprocessing stage; binarization, noise removal, cropping and thinning. In the first part of feature extraction stage, the FCC was extracted by using boundary-based style on the largest contiguous part of the signature images. The extracted FCC was divided into four, eight or sixteen equal parts. In the second part of feature extraction, six global features were calculated against split image to test the feature efficiency. Finally, verification utilized Euclidean distance to measured and matched in k-Nearest Neighbors. MCYT bimodal database was used in every stage in the system. Based on the experimental results, the lowest error rate for FRR and FAR were 6.67 % and 12.44 % with AER 9.85 % which is better in term of performance compared to other works using that same database

    On the performance of helper data template protection schemes

    Get PDF
    The use of biometrics looks promising as it is already being applied in elec- tronic passports, ePassports, on a global scale. Because the biometric data has to be stored as a reference template on either a central or personal storage de- vice, its wide-spread use introduces new security and privacy risks such as (i) identity fraud, (ii) cross-matching, (iii) irrevocability and (iv) leaking sensitive medical information. Mitigating these risks is essential to obtain the accep- tance from the subjects of the biometric systems and therefore facilitating the successful implementation on a large-scale basis. A solution to mitigate these risks is to use template protection techniques. The required protection properties of the stored reference template according to ISO guidelines are (i) irreversibility, (ii) renewability and (iii) unlinkability. A known template protection scheme is the helper data system (HDS). The fun- damental principle of the HDS is to bind a key with the biometric sample with use of helper data and cryptography, as such that the key can be reproduced or released given another biometric sample of the same subject. The identity check is then performed in a secure way by comparing the hash of the key. Hence, the size of the key determines the amount of protection. This thesis extensively investigates the HDS system, namely (i) the the- oretical classication performance, (ii) the maximum key size, (iii) the irre- versibility and unlinkability properties, and (iv) the optimal multi-sample and multi-algorithm fusion method. The theoretical classication performance of the biometric system is deter- mined by assuming that the features extracted from the biometric sample are Gaussian distributed. With this assumption we investigate the in uence of the bit extraction scheme on the classication performance. With use of the the- oretical framework, the maximum size of the key is determined by assuming the error-correcting code to operate on Shannon's bound. We also show three vulnerabilities of HDS that aect the irreversibility and unlinkability property and propose solutions. Finally, we study the optimal level of applying multi- sample and multi-algorithm fusion with the HDS at either feature-, score-, or decision-level

    Secure and Privacy Enhanced Gait Authentication on Smart Phone

    Get PDF
    Smart environments established by the development of mobile technology have brought vast benefits to human being. However, authentication mechanisms on portable smart devices, particularly conventional biometric based approaches, still remain security and privacy concerns. These traditional systems are mostly based on pattern recognition and machine learning algorithms, wherein original biometric templates or extracted features are stored under unconcealed form for performing matching with a new biometric sample in the authentication phase. In this paper, we propose a novel gait based authentication using biometric cryptosystem to enhance the system security and user privacy on the smart phone. Extracted gait features are merely used to biometrically encrypt a cryptographic key which is acted as the authentication factor. Gait signals are acquired by using an inertial sensor named accelerometer in the mobile device and error correcting codes are adopted to deal with the natural variation of gait measurements. We evaluate our proposed system on a dataset consisting of gait samples of 34 volunteers. We achieved the lowest false acceptance rate (FAR) and false rejection rate (FRR) of 3.92% and 11.76%, respectively, in terms of key length of 50 bits
    corecore