211 research outputs found

    Learning Informative Health Indicators Through Unsupervised Contrastive Learning

    Full text link
    Condition monitoring is essential to operate industrial assets safely and efficiently. To achieve this goal, the development of robust health indicators has recently attracted significant attention. These indicators, which provide quantitative real-time insights into the health status of industrial assets over time, serve as valuable tools for fault detection and prognostics. In this study, we propose a novel and universal approach to learn health indicators based on unsupervised contrastive learning. Operational time acts as a proxy for the asset's degradation state, enabling the learning of a contrastive feature space that facilitates the construction of a health indicator by measuring the distance to the healthy condition. To highlight the universality of the proposed approach, we assess the proposed contrastive learning framework in two distinct tasks - wear assessment and fault detection - across two different case studies: a milling machines case study and a real condition monitoring case study of railway wheels from operating trains. First, we evaluate if the health indicator is able to learn the real health condition on a milling machine case study where the ground truth wear condition is continuously measured. Second, we apply the proposed method on a real case study of railway wheels where the ground truth health condition is not known. Here, we evaluate the suitability of the learned health indicator for fault detection of railway wheel defects. Our results demonstrate that the proposed approach is able to learn the ground truth health evolution of milling machines and the learned health indicator is suited for fault detection of railway wheels operated under various operating conditions by outperforming state-of-the-art methods. Further, we demonstrate that our proposed approach is universally applicable to different systems and different health conditions

    Novel deep cross-domain framework for fault diagnosis or rotary machinery in prognostics and health management

    Get PDF
    Improving the reliability of engineered systems is a crucial problem in many applications in various engineering fields, such as aerospace, nuclear energy, and water declination industries. This requires efficient and effective system health monitoring methods, including processing and analyzing massive machinery data to detect anomalies and performing diagnosis and prognosis. In recent years, deep learning has been a fast-growing field and has shown promising results for Prognostics and Health Management (PHM) in interpreting condition monitoring signals such as vibration, acoustic emission, and pressure due to its capacity to mine complex representations from raw data. This doctoral research provides a systematic review of state-of-the-art deep learning-based PHM frameworks, an empirical analysis on bearing fault diagnosis benchmarks, and a novel multi-source domain adaptation framework. It emphasizes the most recent trends within the field and presents the benefits and potentials of state-of-the-art deep neural networks for system health management. Besides, the limitations and challenges of the existing technologies are discussed, which leads to opportunities for future research. The empirical study of the benchmarks highlights the evaluation results of the existing models on bearing fault diagnosis benchmark datasets in terms of various performance metrics such as accuracy and training time. The result of the study is very important for comparing or testing new models. A novel multi-source domain adaptation framework for fault diagnosis of rotary machinery is also proposed, which aligns the domains in both feature-level and task-level. The proposed framework transfers the knowledge from multiple labeled source domains into a single unlabeled target domain by reducing the feature distribution discrepancy between the target domain and each source domain. Besides, the model can be easily reduced to a single-source domain adaptation problem. Also, the model can be readily updated to unsupervised domain adaptation problems in other fields such as image classification and image segmentation. Further, the proposed model is modified with a novel conditional weighting mechanism that aligns the class-conditional probability of the domains and reduces the effect of irrelevant source domain which is a critical issue in multi-source domain adaptation algorithms. The experimental verification results show the superiority of the proposed framework over state-of-the-art multi-source domain-adaptation models

    A Stacked Multi-Granularity Convolution Denoising Auto-Encoder

    Get PDF
    With the development of big data, artificial intelligence has provided many intelligent solutions to urban life. For instance, an image-based intelligent technology, such as image classification of diseases, is widely used in daily life. However, the image in real life is mostly unlabeled, so the performance of many image-based intelligent models shows limitations. Therefore, how to use a large amount of unlabeled image data to build an efficient and high-quality model for better urban life has been an urgent research topic. In this paper, we propose an unsupervised image feature extraction method that is referred to as a stacked multi-granularity convolution denoising auto-encoder (SMGCDAE). The algorithm is based on a convolutional neural network (CNN), yet it introduces a multi-granularity kernel. This approach resolved issues with image unicity by extracting a diverse category of high-level features. In addition, the denoising auto-encoder ensures stability and improves the classification accuracy by extracting more robust features. The algorithm was assessed using three image benchmark datasets and a series of meningitis images, achieving higher average accuracy than other methods. These results suggest that the algorithm is capable of extracting more discriminative high-level features and thus offers superior performance compared with the existing methodologies

    Condition Monitoring Methods for Large, Low-speed Bearings

    Get PDF
    In all industrial production plants, well-functioning machines and systems are required for sustained and safe operation. However, asset performance degrades over time and may lead to reduced effiency, poor product quality, secondary damage to other assets or even complete failure and unplanned downtime of critical systems. Besides the potential safety hazards from machine failure, the economic consequences are large, particularly in offshore applications where repairs are difficult. This thesis focuses on large, low-speed rolling element bearings, concretized by the main swivel bearing of an offshore drilling machine. Surveys have shown that bearing failure in drilling machines is a major cause of rig downtime. Bearings have a finite lifetime, which can be estimated using formulas supplied by the bearing manufacturer. Premature failure may still occur as a result of irregularities in operating conditions and use, lubrication, mounting, contamination, or external environmental factors. On the contrary, a bearing may also exceed the expected lifetime. Compared to smaller bearings, historical failure data from large, low-speed machinery is rare. Due to the high cost of maintenance and repairs, the preferred maintenance arrangement is often condition based. Vibration measurements with accelerometers is the most common data acquisition technique. However, vibration based condition monitoring of large, low-speed bearings is challenging, due to non-stationary operating conditions, low kinetic energy and increased distance from fault to transducer. On the sensor side, this project has also investigated the usage of acoustic emission sensors for condition monitoring purposes. Roller end damage is identified as a failure mode of interest in tapered axial bearings. Early stage abrasive wear has been observed on bearings in drilling machines. The failure mode is currently only detectable upon visual inspection and potentially through wear debris in the bearing lubricant. In this thesis, multiple machine learning algorithms are developed and applied to handle the challenges of fault detection in large, low-speed bearings with little or no historical data and unknown fault signatures. The feasibility of transfer learning is demonstrated, as an approach to speed up implementation of automated fault detection systems when historical failure data is available. Variational autoencoders are proposed as a method for unsupervised dimensionality reduction and feature extraction, being useful for obtaining a health indicator with a statistical anomaly detection threshold. Data is collected from numerous experiments throughout the project. Most notably, a test was performed on a real offshore drilling machine with roller end wear in the bearing. To replicate this failure mode and aid development of condition monitoring methods, an axial bearing test rig has been designed and built as a part of the project. An overview of all experiments, methods and results are given in the thesis, with details covered in the appended papers.publishedVersio

    Use of advanced analytics for health estimation and failure prediction in wind turbines

    Get PDF
    Tesi en modalitat de tesi per compendiThe energy sector has undergone drastic changes and critical revolutions in the last few decades. Renewable energy sources have grown significantly, now representing a sizeable share of the energy production mix. Wind energy has seen increasing rate of adoptions, being one of the more convenient and sustainable mean of producing energy. Research and innovation have helped greatly in driving down production and operation costs of wind energy, yet important challenges still remain open. This thesis addresses predictive maintenance and monitoring of wind turbines, aiming to present predictive frameworks designed with the necessities of the industry in mind. More concretely: interpretability, scalability, modularity and reliability of the predictions are the objectives —together with limited data requirements— of this project. Of all the available data at the disposal of wind turbine operators, SCADA is the principal source of information utilized in this research, due to its wide availability and low cost. Ensemble models played an important role in the development of the presented predictive frameworks thanks to their modular nature which allows to combine very diverse algorithms and data types. Important insights gained from these experiments are the beneficial effect of combining multiple and diverse sources of data —for example SCADA and alarms logs—, the easiness of combining different algorithms and indicators, and the noticeable gain in predicting performance that it can provide. Finally, given the central role that SCADA data plays in this thesis, but also in the wind energy industry, a detailed analysis of the limitations and shortcomings of SCADA data is presented. In particular, the ef- fect of data aggregation —a common practice in the wind industry— is determined developing a methodological framework that has been used to study high–frequency SCADA data. This lead to the conclusion that typical aggregation periods, i.e. 5–10 minutes that are the standard in wind energy industry are not able to capture and maintain the information content of fast–changing signals, such as wind and electrical measurements.El sector energètic ha experimentat importants canvis i revolucions en les últimes dècades. Les fonts d’energia renovables han crescut significativament, i ara representen una part important en el conjunt de generació. L’energia eòlica ha augmentat significativament, convertint-se en una de les millors alternatives per produir energia verda. La recerca i la innovació ha ajudat a reduir considerablement els costos de producció i operació de l’energia eòlica, però encara hi ha oberts reptes importants. Aquesta tesi aborda el manteniment predictiu i el seguiment d’aerogeneradors, amb l’objectiu de presentar solucions d’algoritmes de predicció dissenyats tenint en compte les necessitats de la indústria. Més concretament conceptes com, la interpretabilitat, escalabilitat, modularitat i fiabilitat de les prediccions ho són els objectius, juntament amb els requisits limitats per les de dades disponibles d’aquest projecte. De totes les dades disponibles a disposició dels operadors d’aerogeneradors, les dades del sistema SCADA són la principal font d’informació utilitzada en aquest projecte, per la seva àmplia disponibilitat i baix cost. En el present treball, els models de conjunt tenen un paper important en el desenvolupament dels marcs predictius presentats gràcies al seu caràcter modular que permet l’ús d’algoritmes i tipus de dades molt diversos. Resultats importants obtinguts d’aquests experiments són l’efecte beneficiós de combinar múltiples i diverses fonts de dades, per exemple, SCADA i dades d’alarmes, la facilitat de combinar diferents algorismes i indicadors i el notable guany en predir el rendiment que es pot oferir. Finalment, donat el paper central que SCADA l’anàlisi de dades juga en aquesta tesi, però també en la indústria de l’energia eòlica, una anàlisi detallada de la es presenten les limitacions i les mancances de les dades SCADA. En particular es va estudiar l’efecte de l’agregació de dades -una pràctica habitual en la indústria eòlica-. Dins d’aquest treball es proposa un marc metodològic que s’ha utilitzat per estudiar dades SCADA d’alta freqüència. Això va portar a la conclusió que els períodes d’agregació típics, de 5 a 10 minuts que són l’estàndard a la indústria de l’energia eòlica, no són capaços de capturar i mantenir el contingut d’informació de senyals que canvien ràpidament, com ara mesures eòliques i elèctriquesPostprint (published version

    A Recent Machine Learning Techniques for Failure Diagnosis of Rolling Element Bearing

    Get PDF
    • …
    corecore