15 research outputs found

    An Individual Node Delay Based Efficient Power Aware Routing Protocol for Wireless Heterogeneous Sensor Networks

    Get PDF
    Miscellaneous node transmission ranges builds up Wireless Heterogeneous Sensor Networks (WHSNs). Designing an efficient, reliable and scalable routing protocol for WHSNs with intermittent asymmetric links is a challenging task. In this paper, we propose an efficient power aware routing scheme for WHSNs, which can provide loop-free, stateless, source-to-sink routing scheme without using prior information about neighbor. It uses both symmetric and asymmetric links to forward data from source to sink. The source node broadcasts location information to all its neighbor nodes. Each neighbor node calculates a delay slot based on the information obtained from the source to forward its power value to it. The node that has a minimum delay slot forwards the power earlier than the other nodes during contention phase and the delay slot is used to suppress the selection of unsuitable low-power nodes at that time. We also prove that our protocol is loop-free assuming no failures in greedy forwarding. By simulations we show that our protocol significantly outperforms the existing protocols in WHSNs

    Routing Protocols in Vehicular Ad hoc Networks: Survey and Research Challenges

    Full text link
    A Vehicular Ad hoc Network (VANET) is a type of wireless ad hoc network that facilitates ubiquitous connectivity between vehicles in the absence of fixed infrastructure. Mul ti-hop routing and beaconing approaches are two important research challenges in high mobility vehicular networks. Routing protocols are divided into two categories of topology-based and position-based routing protocols. In this article, we perform a comparative study among the existing routing solutions, which explores the main advantages and drawbacks behind their design. After implementing the representatives of geographical and topology routing protocols, we analyze the simulation results and discuss the strengths and weaknesses of these routing protocols with regard to their suitability to vehicular networks. Lastly, we discuss the open issues and research directions related to VANET routing protocols.Ghafoor, KZ.; Mohammed, M.; Lloret, J.; Abu Bakar, K.; Zainuddin, ZM. (2013). Routing Protocols in Vehicular Ad hoc Networks: Survey and Research Challenges. Network Protocols and Algorithms. 5(4):39-83. doi:10.5296/npa.v5i4.4134S39835

    A Novel Communication Approach For Wireless Mobile Smart Objects

    Get PDF
    Tez (Doktora) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2007Thesis (PhD) -- İstanbul Technical University, Institute of Science and Technology, 2007Telsiz ağlar gezgin kullanıcılara nerede olduklarına bağlı olmadan her yerde iletişim kurma ve bilgiye erişim imkanı sağlar. Hiçbir sabit altyapıya gerek duymadan bu imkanı sağlayan tasarsız ağların zaman içinde gelişmesiyle, askeri, ticari ve özel maksatlar için tercih edilir hale gelmiştir. Diğer yandan, bilimsel ve teknolojik gelişmeler ağ elemanlarını daha küçük ve ucuz hale getirdikçe birçok uygulamanın vazgeçilmez parçaları olmuşlardır. Bu ağ elemanları, taşıyıcılara (örneğin gemiler, uçaklar, büyük araçlar, arabalar, insanlar, hayvanlar, vb.) monteli nesneler veya kendi taşıyıcısı olan (aktörler, duyargalar) nesneler olabilir. Fakat bu ağ elemanları ve uygulamalarında bir takım zorluklar yaşanmaktadır. Bu tezde, gezgin tasarsız ve duyarga ağlardaki yaşanan zorlukları ve beklentileri dikkate alarak, gezgin tasarsız ve duyarga ağlar için yeni bir özgün, durumsuz veri akış yaklaşımı ve yönlendirme algoritması önerilmektedir. Durumsuz Ağırlıklı Yönlendirme (DAY, “Stateless Weighted Routing – SWR”) algoritması olarak adlandırdığımız bu algoritma, diğer yöntemlere göre daha az yönlendirme yükü, daha az enerji tüketimi, daha az yol oluşturma gecikmesi sağlamaktadır. Veri, varışa doğru, çoklu yollar üzerinden taşınmaktadır. Çoklu yol oluşturma, güvenirliği sağlamakta, boşluk problemini büyük oranda çözmekte ve en kısa yolu da içeren daha gürbüz yollar oluşmasını sağlamaktadır. DAY aynı zamanda büyük ölçekli ağlarda da uygulanabilir. Bu amaçla, birden fazla veri toplanma düğümü (sink) içeren sürümü olan Çoklu Veri Toplanma Düğümlü- Durumsuz Ağırlıklı Yönlendirme (ÇVTD-DAY - “Multiple Sink-Stateless Weighted Routing - MS-SWR”) yöntemi de büyük ölçekli tasarsız ve duyarga ağları için önerilmiştir. ÇVTD-DAY yöntemi, DAY yönteminde herhangi bir yöntemsel ve algoritmik değişiklik yapmadan birden fazla veri toplanma düğümünün olduğu ağlarda uygulanabilir. Hem DAY, hem ÇVTD-DAY’nin başarımı benzetimler ile ölçüldü. Elde edilen sonuçlar, DAY ‘nin gezgin tasarsız ve duyarga ağlar için istenenleri karşıladığını, karşılaştırılan diğer yöntemlere göre üstün olduğunu ve olası en iyi çözüme yakınlığını, öte yandan ÇVTD-DAY‘nin de büyük ölçekli ağlarda uygulanabilir olduğunu göstermektedir.Wireless networks provide mobile user with ubiquitous communication capability and information access regardless of location. Mobile ad hoc networks, that manage it without a need to infrastructure networks, as evolved in time, become more preferable for military, commercial and special purposes. On the other hand, technological advances made network components smaller and cheaper. These network components involves a wide variety of objects such as objects mounted on crafts/platforms (e.g. ships, aircrafts, trucks, cars, humans, animals), and objects that have their own platforms (e.g. actuators, sensor nodes). However, these network components and their involved applications exhibit some challenges to implement. By considering the challenges and expectations of mobile ad hoc networks and sensor network, we propose a novel stateless data flow approach and routing algorithm namely Stateless Weighted Routing (SWR) for mobile ad hoc and sensor networks. The SWR has low routing overhead providing very low energy consumption, and has low route construction delay than other proposed schemes. Multiple paths to the destination are established for data transmission. Constructing multiple paths provides reliability, eliminates the void problem substantially, and provides more robust routes including the shortest path. The SWR is applicable to large scale networks. We propose the multiple-sink version of the SWR that is namely MS-SWR, to be used in large scale ad hoc and sensor networks with multiple sinks. The MS-SWR can be used with multiple sinks without any functional and algorithmic modification in the SWR protocol. The performance of the SWR and the MS-SWR are evaluated by simulations. The performance of the system shows that the SWR satisfies the requirements of mobile ad hoc networks and outperforms the existing algorithms. The SWR is also tested against a hypothetic routing scheme that finds the shortest available path with no cost in order to compare the performance of the SWR against such an ideal case. Tests also indicate that MS-SWR is scalable for large scale networks.DoktoraPh

    Position-Based Multicast for Mobile Ad-hoc Networks

    Get PDF
    In general, routing protocols for mobile ad-hoc networks (MANETs) can be classified into topology-based protocols and position-based protocols. While for unicast routing many proposals for both classes exist, the existing approaches to multicast routing basically implement topology-based algorithms and only a few of them make use of the geographic positions of the network nodes. These have in common that the sending node has to precalculate the multicast tree over which the packets are distributed and store it in each packet header. This involves two main issues: (a) These approaches are not very flexible with regard to topological changes which abandons the advantages that position-based routing has against topology-based routing, and (b) they do not scale with the number of receivers, since every one of them has to be named in the packet header. This thesis solves these issues and further advances position-based multicast routing. Position-Based Multicast (PBM) enhances the flexibility of position-based multicast routing by following the forwarding principle of position-based unicast routing. It transfers the choice of the next hops in the tree from the sender to the forwarding nodes. Based on the positions of their neighboring nodes, these are able to determine the most suitable next hop(s) at the moment when the packet is being forwarded. The scalability with respect to the number of receiving nodes in a group is solved by Scalable Position-Based Multicast (SPBM). It includes a membership management fulfilling different tasks at once. First, it administers group memberships in order to provide multicast sources with information on whether nodes are subscribed to a specific group. Second, it implements a location service providing the multicast sources with the positions of the subscribed receiver nodes. And third, it geographically aggregates membership data in order to achieve the desired scalability. The group management features two modes of operation: The proactive variant produces a bounded overhead scaling well with the size of the network. The reactive alternative, in contrast, reaches low worst-case join delays but does not limit the overhead. Contention-Based Multicast Forwarding (CBMF) addresses the problems that appear in highly mobile networks induced by outdated position information. Instead of basing forwarding decisions on a perception that may no longer be up to date, the packets are addressed only to the final destination; no explicit next hops are specified. The receiving nodes, which are candidate next hops, then decide by means of contention which of them are the most suitable next hop(s) for a packet. Not only is the decision made based on the most currently available data, but this procedure also saves the regular sending of beacon messages, thus reducing the overhead. The lack of multicast congestion control is another unsolved problem obstructing high-bandwidth data transmission. Sending out more and more packets to a multicast group lets the performance decrease. Backpressure Multicast Congestion Control (BMCC) takes care that the network does not need to handle more packets than it is able to. It achieves this by limiting the packet queues on the intermediate hops. A forwarder may not forward the next packet of a stream before it has noticed---by overhearing the transmission of the next hop---that the previous packet has succeeded. If there is congestion in an area, backpressure is implicitly built up towards the source, which then stops sending out packets until the congestion is released. BMCC takes care that every receiving node will receive packets at the same rate. An alternative mode of operation, BMCC with Backpressure Pruning (BMCC-BP) allows the cutting of congested branches for single packets, permitting a higher rate for uncongested receivers. Besides presenting protocols for multicast communication in MANETs, this thesis also describes implementations of two of the above-mentioned protocols. The first one is an implementation of SPBM for the Linux kernel that allows IP applications to send data via UDP to a group of receivers in an ad-hoc network. The implementation resides between the MAC layer and the network/IP layer of the network stack. It is compatible with unmodified standard kernels of versions 2.4 and 2.6, and may be compiled for x86 or ARM processor architectures. The second implementation is an implementation of CBMF for the ScatterWeb MSB430 sensor nodes. Due to their low-level programmability they allow an integration of the routing protocol with the medium access control. The absence of periodic beacon messages makes the protocol especially suitable for energy-constrained sensor networks. Furthermore, other constraints like limited memory and computational power demand special consideration as well

    Role of Interference and Computational Complexity in Modern Wireless Networks: Analysis, Optimization, and Design

    Get PDF
    Owing to the popularity of smartphones, the recent widespread adoption of wireless broadband has resulted in a tremendous growth in the volume of mobile data traffic, and this growth is projected to continue unabated. In order to meet the needs of future systems, several novel technologies have been proposed, including cooperative communications, cloud radio access networks (RANs) and very densely deployed small-cell networks. For these novel networks, both interference and the limited availability of computational resources play a very important role. Therefore, the accurate modeling and analysis of interference and computation is essential to the understanding of these networks, and an enabler for more efficient design.;This dissertation focuses on four aspects of modern wireless networks: (1) Modeling and analysis of interference in single-hop wireless networks, (2) Characterizing the tradeoffs between the communication performance of wireless transmission and the computational load on the systems used to process such transmissions, (3) The optimization of wireless multiple-access networks when using cost functions that are based on the analytical findings in this dissertation, and (4) The analysis and optimization of multi-hop networks, which may optionally employ forms of cooperative communication.;The study of interference in single-hop wireless networks proceeds by assuming that the random locations of the interferers are drawn from a point process and possibly constrained to a finite area. Both the information-bearing and interfering signals propagate over channels that are subject to path loss, shadowing, and fading. A flexible model for fading, based on the Nakagami distribution, is used, though specific examples are provided for Rayleigh fading. The analysis is broken down into multiple steps, involving subsequent averaging of the performance metrics over the fading, the shadowing, and the location of the interferers with the aim to distinguish the effect of these mechanisms that operate over different time scales. The analysis is extended to accommodate diversity reception, which is important for the understanding of cooperative systems that combine transmissions that originate from different locations. Furthermore, the role of spatial correlation is considered, which provides insight into how the performance in one location is related to the performance in another location.;While it is now generally understood how to communicate close to the fundamental limits implied by information theory, operating close to the fundamental performance bounds is costly in terms of the computational complexity required to receive the signal. This dissertation provides a framework for understanding the tradeoffs between communication performance and the imposed complexity based on how close a system operates to the performance bounds, and it allows to accurately estimate the required data processing resources of a network under a given performance constraint. The framework is applied to Cloud-RAN, which is a new cellular architecture that moves the bulk of the signal processing away from the base stations (BSs) and towards a centralized computing cloud. The analysis developed in this part of the dissertation helps to illuminate the benefits of pooling computing assets when decoding multiple uplink signals in the cloud. Building upon these results, new approaches for wireless resource allocation are proposed, which unlike previous approaches, are aware of the computing limitations of the network.;By leveraging the accurate expressions that characterize performance in the presence of interference and fading, a methodology is described for optimizing wireless multiple-access networks. The focus is on frequency hopping (FH) systems, which are already widely used in military systems, and are becoming more common in commercial systems. The optimization determines the best combination of modulation parameters (such as the modulation index for continuous-phase frequency-shift keying), number of hopping channels, and code rate. In addition, it accounts for the adjacent-channel interference (ACI) and determines how much of the signal spectrum should lie within the operating band of each channel, and how much can be allowed to splatter into adjacent channels.;The last part of this dissertation contemplates networks that involve multi-hop communications. Building on the analytical framework developed in early parts of this dissertation, the performance of such networks is analyzed in the presence of interference and fading, and it is introduced a novel paradigm for a rapid performance assessment of routing protocols. Such networks may involve cooperative communications, and the particular cooperative protocol studied here allows the same packet to be transmitted simultaneously by multiple transmitters and diversity combined at the receiver. The dynamics of how the cooperative protocol evolves over time is described through an absorbing Markov chain, and the analysis is able to efficiently capture the interference that arises as packets are periodically injected into the network by a common source, the temporal correlation among these packets and their interdependence

    Use of Inferential Statistics to Design Effective Communication Protocols for Wireless Sensor Networks

    Get PDF
    This thesis explores the issues and techniques associated with employing the principles of inferential statistics to design effective Medium Access Control (MAC), routing and duty cycle management strategies for multihop Wireless Sensor Networks (WSNs). The main objective of these protocols are to maximise the throughput of the network, to prolong the lifetime of nodes and to reduce the end-to-end delay of packets over a general network scenario without particular considerations for specific topology configurations, traffic patterns or routing policies. WSNs represent one of the leading-edge technologies that have received substantial research efforts due to their prominent roles in many applications. However, to design effective communication protocols for WSNs is particularly challenging due to the scarce resources of these networks and the requirement for large-scale deployment. The MAC, routing and duty cycle management protocols are amongst the important strategies that are required to ensure correct operations of WSNs. This thesis makes use of the inferential statistics field to design these protocols; inferential statistics was selected as it provides a rich design space with powerful approaches and methods. The MAC protocol proposed in this thesis exploits the statistical characteristics of the Gamma distribution to enable each node to adjust its contention parameters dynamically based on its inference for the channel occupancy. This technique reduces the service time of packets and leverages the throughput by improving the channel utilisation. Reducing the service time minimises the energy consumed in contention to access the channel which in turn prolongs the lifetime of nodes. The proposed duty cycle management scheme uses non-parametric Bayesian inference to enable each node to determine the best times and durations for its sleeping durations without posing overheads on the network. Hence the lifetime of node is prolonged by mitigating the amount of energy wasted in overhearing and idle listening. Prolonging the lifetime of nodes increases the throughput of the network and reduces the end-to-end delay as it allows nodes to route their packets over optimal paths for longer periods. The proposed routing protocol uses one of the state-of-the-art inference techniques dubbed spatial reasoning that enables each node to figure out the spatial relationships between nodes without overwhelming the network with control packets. As a result, the end-to-end delay is reduced while the throughput and lifetime are increased. Besides the proposed protocols, this thesis utilises the analytical aspects of statistics to develop rigorous analytical models that can accurately predict the queuing and medium access delay and energy consumption over multihop networks. Moreover, this thesis provides a broader perspective for design of communication protocols for WSNs by casting the operations of these networks in the domains of the artificial chemistry discipline and the harmony search optimisation algorithm

    Wireless Sensor Networks

    Get PDF
    The aim of this book is to present few important issues of WSNs, from the application, design and technology points of view. The book highlights power efficient design issues related to wireless sensor networks, the existing WSN applications, and discusses the research efforts being undertaken in this field which put the reader in good pace to be able to understand more advanced research and make a contribution in this field for themselves. It is believed that this book serves as a comprehensive reference for graduate and undergraduate senior students who seek to learn latest development in wireless sensor networks

    Efficient aggregate computations in large-scale dense wireless sensor networks

    Get PDF
    Tese de doutoramento em InformáticaAssuming a world where we can be surrounded by hundreds or even thousands of inexpensive computing nodes densely deployed, each one with sensing and wireless communication capabilities, the problem of efficiently dealing with the enormous amount of information generated by those nodes emerges as a major challenge. The research in this dissertation addresses this challenge. This research work proves that it is possible to obtain aggregate quantities with a timecomplexity that is independent of the number of nodes, or grows very slowly as the number of nodes increases. This is achieved by co-designing the distributed algorithms for obtaining aggregate quantities and the underlying communication system. This work describes (i) the design and implementation of a prioritized medium access control (MAC) protocol which enforces strict priorities over wireless channels and (ii) the algorithms that allow exploiting this MAC protocol to obtain the minimum (MIN), maximum (MAX) and interpolation of sensor values with a time-complexity that is independent of the number of nodes deployed, whereas other state-of-the-art approaches have a time-complexity that is dependent on the number of nodes. These techniques also enable to efficiently obtain estimates of the number of nodes (COUNT) and the median of the sensor values (MEDIAN). The novel approach proposed to efficiently obtain aggregate quantities in large-scale, dense wireless sensor networks (WSN) is based on the adaptation to wireless media of a MAC protocol, known as dominance/binary countdown, which existed previously only for wired media, and design algorithms that exploit this MAC protocol for efficient data aggregation. Designing and implementing such MAC protocol for wireless media is not trivial. For this reason, a substantial part of this work is focused on the development and implementation of WiDom (short for Wireless Dominance) - a wireless MAC protocol that enables efficient data aggregation in large-scale, dense WSN. An implementation of WiDom is first proposed under the assumption of a fully connected network (a network with a single broadcast domain). This implementation can be exploited to efficiently obtain aggregated quantities. WiDom can also implement static priority scheduling over wireless media. Therefore, a schedulability analysis for WiDom is also proposed. WiDom is then extended to operate in sensor networks where a single transmission cannot reach all nodes, in a network with multiple broadcast domains. These results are significant because often networks of nodes that take sensor readings are designed to be large scale, dense networks and it is exactly for such scenarios that the proposed distributed algorithms for obtaining aggregate quantities excel. The implementation and test of these distributed algorithms in a hardware platform developed shows that aggregate quantities in large-scale, dense wireless sensor systems can be obtained efficientlly.É possível prever um mundo onde estaremos rodeados por centenas ou até mesmo milhares de pequenos nós computacionais densamente instalados. Cada um destes nós será de dimensões muito reduzidas e possui capacidades para obter dados directamente do ambiente através de sensores e transmitir informação via rádio. Frequentemente, este tipo de redes são denominadas de redes de sensores sem fio. Perante tal cenário, o problema de lidar com a considerável quantidade de informação gerada por todos estes nós emerge como um desafio de grande relevância. A investigação apresentada nesta dissertação atenta neste desafio. Este trabalho de investigação prova que é possível obter quantidades agregadas com uma complexidade temporal que é independente do número de nós computacionais envolvidos, ou cresce muito lentamente quando o número de nós aumenta. Isto é conseguido através uma co-concepção dos algoritmos para obter quantidades agregadas e do sistema de comunicação subjacente. Este trabalho descreve (i) a concepção e implementação de um protocolo de acesso ao meio que garante prioridades estáticas em canais de comunicação sem fio e (ii) os algoritmos que permitem tirar partido deste protocolo de acesso ao meio para obter quantidades agregadas como o mínimo (MIN), máximo (MAX) e interpolação de valores obtidos a partir de sensores ambientais com uma complexidade que é independente do número de nós computacionais envolvidos. Estas técnicas também permitem obter, de forma eficiente, estimativas do número de nós (COUNT) e a mediana dos valores dos sensores (MEDIAN). A abordagem inovadora, proposta para obter de forma eficiente quantidades agregadas em redes de sensores sem fio de larga escala, é baseada na adaptação para meios de comunicação sem fio de um protocolo de acesso ao meio anteriormente apenas existente em sistemas cablados, e na concepção de algoritmos que tiram partido deste protocolo para agregação de dados eficiente. A concepção e implementação de tal protocolo de acesso ao meio não é trivial. Por esta razão, uma parte substancial deste trabalho é focada no desenvolvimento e implementação de um protocolo de acesso ao meio que permite agregação de dados eficiente em redes de sensores sem fio densas e de larga escala. Esta implementação é denominada de WiDom. A implementação do WiDom apresentada foi inicialmente desenvolvida assumindo que a rede é totalmente ligada (uma transmisão de um nó alcança todos os outros nós). Esta implementação pode ser explorada para obter quantidades agregadas de forma eficiente. Adicionalmente, o protocolo WiDom pode implementar escalonamento utilizando prioridades fixas, permitindo a proposta de uma análise de resposta temporal. Neste trabalho, o WiDom é também estendido para funcionar em redes onde a transmissão de um nó não pode alcançar todos os outros nós. Os resultados apresentados neste trabalho são relevantes porque as redes de sensores sem fio são frequentemente concebidas para serem densas e de larga escala. É exactamente nestes casos que os algoritmos propostos para obter quantidades agregadas de forma eficiente apresentam maiores vantagens. A implementação e teste destes algoritmos distribuídos numa plataforma especialmente desenvolvida para o efeito demonstra que de facto podem ser obtidas quandidades agregadas de forma eficiente, mesmo em redes de sensores sem fio densas e de larga escala.This research was partially developed at the Real-Time Computing System Research Centre (CISTER), from the School of Engineering of the Polytechnic of Porto (ISEP/IPP

    Air Force Institute of Technology Research Report 2016

    Get PDF
    This Research Report presents the FY16 research statistics and contributions of the Graduate School of Engineering and Management (EN) at AFIT. AFIT research interests and faculty expertise cover a broad spectrum of technical areas related to USAF needs, as reflected by the range of topics addressed in the faculty and student publications listed in this report. In most cases, the research work reported herein is directly sponsored by one or more USAF or DOD agencies. AFIT welcomes the opportunity to conduct research on additional topics of interest to the USAF, DOD, and other federal organizations when adequate manpower and financial resources are available and/or provided by a sponsor. In addition, AFIT provides research collaboration and technology transfer benefits to the public through Cooperative Research and Development Agreements (CRADAs)
    corecore