637 research outputs found

    Structure of the Complete RNA Polymerase II Elongation Complex and its Interaction with the Elongation Factor TFIIS

    Get PDF
    This thesis describes crystal structures of complete, 12-subunit yeast RNA polymerase II (Pol II) in complex with a synthetic transcription bubble and product RNA, with an NTP substrate analogue, and in complex with the transcription elongation factor TFIIS. The structure of the Pol II-transcription bubble-RNA complex reveals incoming template and non-template DNA, a seven base-pair DNA-RNA hybrid, and three nucleotides each of separating DNA and RNA. Based on this structure, those parts of Pol II were identified which are involved in separating template DNA from non-template DNA before the active site, and DNA from product RNA at the upstream end of the DNA-RNA hybrid. In both instances, strand separation can be explained by Pol II-induced duplex distortions. Only parts of the complete transcription bubble present in the complexes are ordered in the crystal structure, explaining the way in which high processivity of Pol II is reconciled with rapid translocation along the DNA template. The presence of an NTP substrate analogue in a conserved putative pre-insertion site was unveiled in a Pol II-transcription bubble-RNA complex crystal soaked with the substrate analogue GMPCPP. The structure of the Pol II-TFIIS complex was obtained from Pol II crystals soaked with TFIIS. TFIIS extends from the Pol II surface to the active site and complements the active site with two essential and invariant acidic residues for hydrolytic RNA cleavage. TFIIS also induces extensive structural changes in Pol II that reposition nucleic acids, in particular RNA, near the active centre. These results support the idea that Pol II contains a single tuneable active site for RNA polymerisation and cleavage. The technical obstacles imposed by crystal structure determination of large, transient protein-DNA-RNA complexes were overcome by two novel, fluorescence-based assays to monitor and optimise the composition of the crystals. Both assays are not limited to Pol II complexes, but can serve as a general tool for the crystallographic community

    The 1995 Goddard Conference on Space Applications of Artificial Intelligence and Emerging Information Technologies

    Get PDF
    This publication comprises the papers presented at the 1995 Goddard Conference on Space Applications of Artificial Intelligence and Emerging Information Technologies held at the NASA/Goddard Space Flight Center, Greenbelt, Maryland, on May 9-11, 1995. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed

    A hybrid backtracking algorithm for automatic test data generation

    Get PDF
    Kao osnovno pitanje u ispitivanju softvera, automatsko generiranje podataka za ispitivanje je od najveće važnosti, što je u biti problem zadovoljavanja ograničenja, a rješava se algoritmima pretraživanja. U našem prethodnom istraživanju za rješenje ograničenja predložena je metoda grananja i ograničavanja, a elaborirane su unaprijedne metode. Zasnovan na intervalnom aritmetičkom i simboličkom izvršenju, ovaj je rad usredotočen na unatražnu metodu, a to je povezivanje unaprijednog provjeravanja i unatražnog ispitivanja usmjerenog konflikta, u cilju poboljšanja učinkovitosti unatražnog praćenja u postupku traženja. Zatvaranja varijabli se koriste kako bi se olakšalo lociranje nesuglasica koje dovode do neriješenih rezultata (dead ends). Empirijski eksperimenti dokazuju učinkovitost predložene hibridne unatražne metode i njenu primjenljivost u inženjerstvu.As a fundamental issue in software testing, automatic test data generation is of crucial importance, which is essentially a constraint satisfaction problem and solved by search algorithms. In our previous research, branch and bound was proposed as our constraint solver and the look-ahead methods were elaborated. Based on interval arithmetic and symbolic execution, this paper focuses on the look-back or backtracking method, which is the hybridization of forward checking and conflict-directed backjumping, with the aim of improving the efficiency of backtracking in the search procedure. The closures of variables are used to facilitate the localization of the conflicts which cause dead ends. Empirical experiments prove the effectiveness of the proposed hybrid backtracking method and its applicability in engineering

    Off-line evaluation of indoor positioning systems in different scenarios: the experiences from IPIN 2020 competition

    Get PDF
    Every year, for ten years now, the IPIN competition has aimed at evaluating real-world indoor localisation systems by testing them in a realistic environment, with realistic movement, using the EvAAL framework. The competition provided a unique overview of the state-of-the-art of systems, technologies, and methods for indoor positioning and navigation purposes. Through fair comparison of the performance achieved by each system, the competition was able to identify the most promising approaches and to pinpoint the most critical working conditions. In 2020, the competition included 5 diverse off-site off-site Tracks, each resembling real use cases and challenges for indoor positioning. The results in terms of participation and accuracy of the proposed systems have been encouraging. The best performing competitors obtained a third quartile of error of 1 m for the Smartphone Track and 0.5 m for the Foot-mounted IMU Track. While not running on physical systems, but only as algorithms, these results represent impressive achievements.Track 3 organizers were supported by the European Union’s Horizon 2020 Research and Innovation programme under the Marie Skłodowska Curie Grant 813278 (A-WEAR: A network for dynamic WEarable Applications with pRivacy constraints), MICROCEBUS (MICINN, ref. RTI2018-095168-B-C55, MCIU/AEI/FEDER UE), INSIGNIA (MICINN ref. PTQ2018-009981), and REPNIN+ (MICINN, ref. TEC2017-90808-REDT). We would like to thanks the UJI’s Library managers and employees for their support while collecting the required datasets for Track 3. Track 5 organizers were supported by JST-OPERA Program, Japan, under Grant JPMJOP1612. Track 7 organizers were supported by the Bavarian Ministry for Economic Affairs, Infrastructure, Transport and Technology through the Center for Analytics-Data-Applications (ADA-Center) within the framework of “BAYERN DIGITAL II. ” Team UMinho (Track 3) was supported by FCT—Fundação para a Ciência e Tecnologia within the R&D Units Project Scope under Grant UIDB/00319/2020, and the Ph.D. Fellowship under Grant PD/BD/137401/2018. Team YAI (Track 3) was supported by the Ministry of Science and Technology (MOST) of Taiwan under Grant MOST 109-2221-E-197-026. Team Indora (Track 3) was supported in part by the Slovak Grant Agency, Ministry of Education and Academy of Science, Slovakia, under Grant 1/0177/21, and in part by the Slovak Research and Development Agency under Contract APVV-15-0091. Team TJU (Track 3) was supported in part by the National Natural Science Foundation of China under Grant 61771338 and in part by the Tianjin Research Funding under Grant 18ZXRHSY00190. Team Next-Newbie Reckoners (Track 3) were supported by the Singapore Government through the Industry Alignment Fund—Industry Collaboration Projects Grant. This research was conducted at Singtel Cognitive and Artificial Intelligence Lab for Enterprises (SCALE@NTU), which is a collaboration between Singapore Telecommunications Limited (Singtel) and Nanyang Technological University (NTU). Team KawaguchiLab (Track 5) was supported by JSPS KAKENHI under Grant JP17H01762. Team WHU&AutoNavi (Track 6) was supported by the National Key Research and Development Program of China under Grant 2016YFB0502202. Team YAI (Tracks 6 and 7) was supported by the Ministry of Science and Technology (MOST) of Taiwan under Grant MOST 110-2634-F-155-001

    Off-Line Evaluation of Indoor Positioning Systems in Different Scenarios: The Experiences From IPIN 2020 Competition

    Get PDF
    Every year, for ten years now, the IPIN competition has aimed at evaluating real-world indoor localisation systems by testing them in a realistic environment, with realistic movement, using the EvAAL framework. The competition provided a unique overview of the state-of-the-art of systems, technologies, and methods for indoor positioning and navigation purposes. Through fair comparison of the performance achieved by each system, the competition was able to identify the most promising approaches and to pinpoint the most critical working conditions. In 2020, the competition included 5 diverse off-site off-site Tracks, each resembling real use cases and challenges for indoor positioning. The results in terms of participation and accuracy of the proposed systems have been encouraging. The best performing competitors obtained a third quartile of error of 1 m for the Smartphone Track and 0.5 m for the Foot-mounted IMU Track. While not running on physical systems, but only as algorithms, these results represent impressive achievements

    Third International Symposium on Artificial Intelligence, Robotics, and Automation for Space 1994

    Get PDF
    The Third International Symposium on Artificial Intelligence, Robotics, and Automation for Space (i-SAIRAS 94), held October 18-20, 1994, in Pasadena, California, was jointly sponsored by NASA, ESA, and Japan's National Space Development Agency, and was hosted by the Jet Propulsion Laboratory (JPL) of the California Institute of Technology. i-SAIRAS 94 featured presentations covering a variety of technical and programmatic topics, ranging from underlying basic technology to specific applications of artificial intelligence and robotics to space missions. i-SAIRAS 94 featured a special workshop on planning and scheduling and provided scientists, engineers, and managers with the opportunity to exchange theoretical ideas, practical results, and program plans in such areas as space mission control, space vehicle processing, data analysis, autonomous spacecraft, space robots and rovers, satellite servicing, and intelligent instruments

    AN INTIMATE INSIGHT ON PSYCHOPATHY AND A NOVEL HERMENEUTIC PSYCHOLOGICAL SCIENCE

    Get PDF
    Abstract This paper is rather a profound hermeneutic enunciation putting into question our present understanding of psychopathy. It further articulates, in complement, a novel theoretical and methodological conceptualisation for a hermeneutic psychological science. Methodology-wise, it puts into question a traditional more or less categorical and mechanical approach to the social and behavioural sciences as it strives to introduce a creative and insightful approach for the articulation of ideas. It rather seeks to construe the scientific method as being more about falsifiability and validation but driven by a sense of creative understanding and insight of notions laid out as open-ended conceptualisations. Theory-wise, it sees continuity between anthropology and psychology as anthropopsychology behind an entropic construct of human psychology based on a recurrent re-institutionalisation mechanism for intemporal-preservation-entropy-or-contiguity–or–ontological-preservation

    From alternations to ordered rules : a system for learning derivational phonology

    Get PDF
    This work presents a computational rule learner tasked with inferring underlying forms and ordered rules from phonological paradigms akin to those found in traditional pen and paper analyses. The scheme being proposed is a batch learner capable of analysing surface alternations and hypothesising ordered derivations compatible with them in order to create an explicit mapping from UR to SR. We shall refer to both the competence of an idealised speaker-hearer (in keeping with traditional generative linguistic theory) and the conscious methods employed by the phonologist in the course of analysing data sets. The fundamental axiom of this model is that the child has memorised the relevant surface forms (as they appear in the paradigm) alongside the appropriate semantic information in order to allow them to set up paradigmatic structures for the purpose of inferring both underlying forms and phonological rules simultaneously. The mapping from minimal pairs to underlying forms is the primary conduit to inferring the rules themselves

    Off-Line Evaluation of Indoor Positioning Systems in Different Scenarios: The Experiences From IPIN 2020 Competition

    Get PDF
    Every year, for ten years now, the IPIN competition has aimed at evaluating real-world indoor localisation systems by testing them in a realistic environment, with realistic movement, using the EvAAL framework. The competition provided a unique overview of the state-of-the-art of systems, technologies, and methods for indoor positioning and navigation purposes. Through fair comparison of the performance achieved by each system, the competition was able to identify the most promising approaches and to pinpoint the most critical working conditions. In 2020, the competition included 5 diverse off-site off-site Tracks, each resembling real use cases and challenges for indoor positioning. The results in terms of participation and accuracy of the proposed systems have been encouraging. The best performing competitors obtained a third quartile of error of 1 m for the Smartphone Track and 0.5 m for the Foot-mounted IMU Track. While not running on physical systems, but only as algorithms, these results represent impressive achievements.Track 3 organizers were supported by the European Union’s Horizon 2020 Research and Innovation programme under the Marie Skłodowska Curie Grant 813278 (A-WEAR: A network for dynamic WEarable Applications with pRivacy constraints), MICROCEBUS (MICINN, ref. RTI2018-095168-B-C55, MCIU/AEI/FEDER UE), INSIGNIA (MICINN ref. PTQ2018-009981), and REPNIN+ (MICINN, ref. TEC2017-90808-REDT). We would like to thanks the UJI’s Library managers and employees for their support while collecting the required datasets for Track 3. Track 5 organizers were supported by JST-OPERA Program, Japan, under Grant JPMJOP1612. Track 7 organizers were supported by the Bavarian Ministry for Economic Affairs, Infrastructure, Transport and Technology through the Center for Analytics-Data-Applications (ADA-Center) within the framework of “BAYERN DIGITAL II. ” Team UMinho (Track 3) was supported by FCT—Fundação para a Ciência e Tecnologia within the R&D Units Project Scope under Grant UIDB/00319/2020, and the Ph.D. Fellowship under Grant PD/BD/137401/2018. Team YAI (Track 3) was supported by the Ministry of Science and Technology (MOST) of Taiwan under Grant MOST 109-2221-E-197-026. Team Indora (Track 3) was supported in part by the Slovak Grant Agency, Ministry of Education and Academy of Science, Slovakia, under Grant 1/0177/21, and in part by the Slovak Research and Development Agency under Contract APVV-15-0091. Team TJU (Track 3) was supported in part by the National Natural Science Foundation of China under Grant 61771338 and in part by the Tianjin Research Funding under Grant 18ZXRHSY00190. Team Next-Newbie Reckoners (Track 3) were supported by the Singapore Government through the Industry Alignment Fund—Industry Collaboration Projects Grant. This research was conducted at Singtel Cognitive and Artificial Intelligence Lab for Enterprises (SCALE@NTU), which is a collaboration between Singapore Telecommunications Limited (Singtel) and Nanyang Technological University (NTU). Team KawaguchiLab (Track 5) was supported by JSPS KAKENHI under Grant JP17H01762. Team WHU&AutoNavi (Track 6) was supported by the National Key Research and Development Program of China under Grant 2016YFB0502202. Team YAI (Tracks 6 and 7) was supported by the Ministry of Science and Technology (MOST) of Taiwan under Grant MOST 110-2634-F-155-001.Peer reviewe
    corecore