1,399 research outputs found

    DeSyRe: on-Demand System Reliability

    No full text
    The DeSyRe project builds on-demand adaptive and reliable Systems-on-Chips (SoCs). As fabrication technology scales down, chips are becoming less reliable, thereby incurring increased power and performance costs for fault tolerance. To make matters worse, power density is becoming a significant limiting factor in SoC design, in general. In the face of such changes in the technological landscape, current solutions for fault tolerance are expected to introduce excessive overheads in future systems. Moreover, attempting to design and manufacture a totally defect and fault-free system, would impact heavily, even prohibitively, the design, manufacturing, and testing costs, as well as the system performance and power consumption. In this context, DeSyRe delivers a new generation of systems that are reliable by design at well-balanced power, performance, and design costs. In our attempt to reduce the overheads of fault-tolerance, only a small fraction of the chip is built to be fault-free. This fault-free part is then employed to manage the remaining fault-prone resources of the SoC. The DeSyRe framework is applied to two medical systems with high safety requirements (measured using the IEC 61508 functional safety standard) and tight power and performance constraints

    Embryonic Architecture with Built-in Self-test and GA Evolved Configuration Data

    Get PDF
    The embryonic architecture, which draws inspirationfrom the biological process of ontogeny, has built-inmechanisms for self-repair. The entire genome is stored in theembryonic cells, allowing the data to be replicated in healthycells in the event of a single cell failure in the embryonic fabric.A specially designed genetic algorithm (GA) is used to evolve theconfiguration information for embryonic cells. Any failed embryoniccell must be indicated via the proposed Built-in Self-test(BIST) the module of the embryonic fabric. This paper recommendsan effective centralized BIST design for a novel embryonic fabric.Every embryonic cell is scanned by the proposed BIST in casethe self-test mode is activated. The centralized BIST design usesless hardware than if it were integrated into each embryoniccell. To reduce the size of the data, the genome or configurationdata of each embryonic cell is decoded using Cartesian GeneticProgramming (CGP). The GA is tested for the 1-bit adder and2-bit comparator circuits that are implemented in the embryoniccell. Fault detection is possible at every function of the cell due tothe BIST module’s design. The CGP format can also offer gate-levelfault detection. Customized GA and BIST are combinedwith the novel embryonic architecture. In the embryonic cell, self-repairis accomplished via data scrubbing for transient errors

    Concepts for Short Range Millimeter-wave Miniaturized Radar Systems with Built-in Self-Test

    Get PDF
    This work explores short-range millimeter wave radar systems, with emphasis on miniaturization and overall system cost reduction. The designing and implementation processes, starting from the system level design considerations and characterization of the individual components to final implementation of the proposed architecture are described briefly. Several D-band radar systems are developed and their functionality and performances are demonstrated

    A Novel Reseeding Mechanism for Improving Pseudo-Random Testing of VLSI Circuits

    Get PDF
    [[abstract]]During built-in self-test (BIST), the set of patterns generated by a pseudo-random pattern generator may not provide sufficiently high fault coverage and many patterns can't detect fault (called useless patterns). In order to reduce the test time, we can remove useless patterns or change them to useful patterns (fault dropping). In fact, a random test set includes many useless patterns. Therefore we present a technology, including both reseeding and bit modifying (a.k.a. pattern mapping) to remove useless patterns or change them to useful patterns. When patterns changed, we pick out number of different fewer bits, leading to very short test length. Then we use an additional bit counter to improve test length and achieve high fault coverage. The technique we present is applicable for single-stuck-at faults. Experimental results indicate that complete fault coverage-100% can be obtained with less test time.[[notice]]補正完畢[[journaltype]]國際[[incitationindex]]EI[[ispeerreviewed]]Y[[booktype]]紙本[[countrycodes]]TW

    FPGA ARCHITECTURE AND VERIFICATION OF BUILT IN SELF-TEST (BIST) FOR 32-BIT ADDER/SUBTRACTER USING DE0-NANO FPGA AND ANALOG DISCOVERY 2 HARDWARE

    Get PDF
    The integrated circuit (IC) is an integral part of everyday modern technology, and its application is very attractive to hardware and software design engineers because of its versatility, integration, power consumption, cost, and board area reduction. IC is available in various types such as Field Programming Gate Array (FPGA), Application Specific Integrated Circuit (ASIC), System on Chip (SoC) architecture, Digital Signal Processing (DSP), microcontrollers (μC), and many more. With technology demand focused on faster, low power consumption, efficient IC application, design engineers are facing tremendous challenges in developing and testing integrated circuits that guaranty functionality, high fault coverage, and reliability as the transistor technology is shrinking to the point where manufacturing defects of ICs are affecting yield which associates with the increased cost of the part. The competitive IC market is pressuring manufactures of ICs to develop and market IC in a relatively quick turnaround which in return requires design and verification engineers to develop an integrated self-test structure that would ensure fault-free and the quality product is delivered on the market. 70-80% of IC design is spent on verification and testing to ensure high quality and reliability for the enduser. To test complex and sophisticated IC designs, the verification engineers must produce laborious and costly test fixtures which affect the cost of the part on the competitive market. To avoid increasing the part cost due to yield and test time to the end-user and to keep up with the competitive market many IC design engineers are deviating from complex external test fixture approach and are focusing on integrating Built-in Self-Test (BIST) or Design for Test (DFT) techniques onto IC’s which would reduce time to market but still guarantee high coverage for the product. Understanding the BIST, the architecture, as well as the application of IC, must be understood before developing IC. The architecture of FPGA is elaborated in this paper followed by several BIST techniques and applications of those BIST relative to FPGA, SoC, analog to digital (ADC), or digital to analog converters (DAC) that are integrated on IC. Paper is concluded with verification of BIST for the 32-bit adder/subtracter designed in Quartus II software using the Analog Discovery 2 module as stimulus and DE0-NANO FPGA board for verification

    Design of a Scan Chain for Side Channel Attacks on AES Cryptosystem for Improved Security

    Get PDF
    Scan chain-based attacks are side-channel attacks focusing on one of the most significant features of hardware test circuitry. A technique called Design for Testability (DfT) involves integrating certain testability components into a hardware design. However, this creates a side channel for cryptanalysis, providing crypto devices vulnerable to scan-based attacks. Advanced Encryption Standard (AES) has been proven as the most powerful and secure symmetric encryption algorithm announced by USA Government and it outperforms all other existing cryptographic algorithms. Furthermore, the on-chip implementation of private key algorithms like AES has faced scan-based side-channel attacks. With the aim of protecting the data for secure communication, a new hybrid pipelined AES algorithm with enhanced security features is implemented. This paper proposes testing an AES core with unpredictable response compaction and bit level-masking throughout the scan chain process. A bit-level scan flipflop focused on masking as a scan protection solution for secure testing. The experimental results show that the best security is provided by the randomized addition of masked scan flipflop through the scan chain and also provides minimal design difficulty and power expansion overhead with some negligible delay measures. Thus, the proposed technique outperforms the state-of-the-art LUT-based S-box and the composite sub-byte transformation model regarding throughput rate 2 times and 15 times respectively. And security measured in the avalanche effect for the sub-pipelined model has been increased up to 95 per cent with reduced computational complexity. Also, the proposed sub-pipelined S-box utilizing a composite field arithmetic scheme achieves 7 per cent area effectiveness and 2.5 times the hardware complexity compared to the LUT-based model

    Built-in self test of high speed analog-to-digital converters

    Get PDF
    Signals found in nature need to be converted to the digital domain through analog-to-digital converters (ADCs) to be processed by digital means [1]. For applications in communication and measurement [2], [3], high conversion rates are required. With advances of the complementary metal oxide semiconductor (CMOS) technology, the conversion rates of CMOS ADCs are now well beyond the gigasamples per second (GS/s) range, but only moderate resolutions are required [4]. These ADCs need to be tested after fabrication and, if possible, during field operation. The test costs are a very significant fraction of their production cost [5]. This is mainly due to lengthy use of very expensive automated test equipment (ATE) to apply specific test stimuli to the devices under test (DUT) and to collect and analyze their responses.publishe

    A Hardware Security Solution against Scan-Based Attacks

    Get PDF
    Scan based Design for Test (DfT) schemes have been widely used to achieve high fault coverage for integrated circuits. The scan technique provides full access to the internal nodes of the device-under-test to control them or observe their response to input test vectors. While such comprehensive access is highly desirable for testing, it is not acceptable for secure chips as it is subject to exploitation by various attacks. In this work, new methods are presented to protect the security of critical information against scan-based attacks. In the proposed methods, access to the circuit containing secret information via the scan chain has been severely limited in order to reduce the risk of a security breach. To ensure the testability of the circuit, a built-in self-test which utilizes an LFSR as the test pattern generator (TPG) is proposed. The proposed schemes can be used as a countermeasure against side channel attacks with a low area overhead as compared to the existing solutions in literature

    A novel high-speed trellis-coded modulation encoder/decoder ASIC design

    Get PDF
    Trellis-coded Modulation (TCM) is used in bandlimited communication systems. TCM efficiency improves coding gain by combining modulation and forward error correction coding in one process. In TCM, the bandwidth expansion is not required because it uses the same symbol rate and power spectrum; the differences are the introduction of a redundancy bit and the use of a constellation with double points. In this thesis, a novel TCM encoder/decoder ASIC chip implementation is presented. This ASIC codec not only increases decoding speed but also reduces hardware complexity. The algorithm and technique are presented for a 16-state convolutional code which is used in standard 256-QAM wireless systems. In the decoder, a Hamming distance is used as a cost function to determine output in the maximum likelihood Viterbi decoder. Using the relationship between the delay states and the path state in the Trellis tree of the code, a pre-calculated Hamming distances are stored in a look-up table. In addition, an output look-up-table is generated to determine the decoder output. This table is established by the two relative delay states in the code. The thesis provides details of the algorithm and the structure of TCM codec chip. Besides using parallel processing, the ASIC implementation also uses pipelining to further increase decoding speed. The codec was implemented in ASIC using standard 0.18ƒÝm CMOS technology; the ASIC core occupied a silicon area of 1.1mm2. All register transfer level code of the codec was simulated and synthesized. The chip layout was generated and the final chip was fabricated by Taiwan Semiconductor Manufacturing Company through the Canadian Microelectronics Corporation. The functional testing of the fabricated codec was performed partially successful; the timing testing has not been fully accomplished because the chip was not always stable
    corecore