818 research outputs found

    INTRUSION DETECTION OF A SIMULATED SCADA SYSTEM USING A DATA-DRIVEN MODELING APPROACH

    Get PDF
    Supervisory Control and Data Acquisition (SCADA) are large, geographically distributed systems that regulate help processes in industries such as nuclear power, transportation or manufacturing. SCADA is a combination of physical, sensing, and communications equipment that is used for monitoring, control and telemetry acquisition actions. Because SCADA often control the distribution of vital resources such as electricity and water, there is a need to protect these cyber-physical systems from those with possible malicious intent. To this end, an Intrusion Detection System (IDS) is utilized to monitor telemetry sources in order to detect unwanted activities and maintain overall system integrity. This dissertation presents the results in developing a behavior-based approach to intrusion detection using a simulated SCADA test bed. Empirical modeling techniques known as Auto Associative Kernel Regression (AAKR) and Auto Associative Multivariate State Estimation Technique (AAMSET) are used to learn the normal behavior of the test bed. The test bed was then subjected to repeated intrusion injection experiments using penetration testing software and exploit codes. Residuals generated from these experiments are then supplied to an anomaly detection algorithm known as the Sequential Probability Ratio Test (SPRT). This approach is considered novel in that the AAKR and AAMSET, combined with the SPRT, have not been utilized previously in industry for cybersecurity purposes. Also presented in this dissertation is a newly developed variable grouping algorithm that is based on the Auto Correlation Function (ACF) for a given set of input data. Variable grouping is needed for these modeling methods to arrive at a suitable set of predictors that return the lowest error in model performance. The developed behavior-based techniques were able to successfully detect many types of intrusions that include network reconnaissance, DoS, unauthorized access, and information theft. These methods would then be useful in detecting unwanted activities of intruders from both inside and outside of the monitored network. These developed methods would also serve to add an additional layer of security. When compared with two separate variable grouping methods, the newly developed grouping method presented in this dissertation was shown to extract similar groups or groups with lower average model prediction errors

    Developing Cyberspace Data Understanding: Using CRISP-DM for Host-based IDS Feature Mining

    Get PDF
    Current intrusion detection systems generate a large number of specific alerts, but do not provide actionable information. Many times, these alerts must be analyzed by a network defender, a time consuming and tedious task which can occur hours or days after an attack occurs. Improved understanding of the cyberspace domain can lead to great advancements in Cyberspace situational awareness research and development. This thesis applies the Cross Industry Standard Process for Data Mining (CRISP-DM) to develop an understanding about a host system under attack. Data is generated by launching scans and exploits at a machine outfitted with a set of host-based data collectors. Through knowledge discovery, features are identified within the data collected which can be used to enhance host-based intrusion detection. By discovering relationships between the data collected and the events, human understanding of the activity is shown. This method of searching for hidden relationships between sensors greatly enhances understanding of new attacks and vulnerabilities, bolstering our ability to defend the cyberspace domain

    Using Hierarchical Temporal Memory for Detecting Anomalous Network Activity

    Get PDF
    This thesis explores the nature of cyberspace and forms an argument for it as an intangible world. This research is motivated by the notion of creating intelligently autonomous cybercraft to reside in that environment and maintain domain superiority. Specifically, this paper offers 7 challenges associated with development of intelligent, autonomous cybercraft. The primary focus is an analysis of the claims of a machine learning language called Hierarchical Temporal Memory (HTM). In particular, HTM theory claims to facilitate intelligence in machines via accurate predictions. It further claims to be able to make accurate predictions of unusual worlds, like cyberspace. The research thrust of this thesis is then two fold. The primary objective is to provide supporting evidence for the conjecture that HTM implementations facilitate accurate predictions of unusual worlds. The second objective is to then lend evidence that prediction is a good indication of intelligence. A commercial implementation of HTM theory is tested as an anomaly detection system and its ability to characterize network traffic (a major component of cyberspace) as benign or malicious is evaluated. Through the course of testing the poor performance of this implementation is revealed and an independent algorithm is developed from a variant understanding of HTM theory. This alternate algorithm is independent of the realm of cyberspace and developed solely (but also in a contrived abstract world) to lend credibility to concept of using prediction as a method of testing intelligence

    An efficient design space exploration framework to optimize power-efficient heterogeneous many-core multi-threading embedded processor architectures

    Get PDF
    By the middle of this decade, uniprocessor architecture performance had hit a roadblock due to a combination of factors, such as excessive power dissipation due to high operating frequencies, growing memory access latencies, diminishing returns on deeper instruction pipelines, and a saturation of available instruction level parallelism in applications. An attractive and viable alternative embraced by all the processor vendors was multi-core architectures where throughput is improved by using micro-architectural features such as multiple processor cores, interconnects and low latency shared caches integrated on a single chip. The individual cores are often simpler than uniprocessor counterparts, use hardware multi-threading to exploit thread-level parallelism and latency hiding and typically achieve better performance-power figures. The overwhelming success of the multi-core microprocessors in both high performance and embedded computing platforms motivated chip architects to dramatically scale the multi-core processors to many-cores which will include hundreds of cores on-chip to further improve throughput. With such complex large scale architectures however, several key design issues need to be addressed. First, a wide range of micro- architectural parameters such as L1 caches, load/store queues, shared cache structures and interconnection topologies and non-linear interactions between them define a vast non-linear multi-variate micro-architectural design space of many-core processors; the traditional method of using extensive in-loop simulation to explore the design space is simply not practical. Second, to accurately evaluate the performance (measured in terms of cycles per instruction (CPI)) of a candidate design, the contention at the shared cache must be accounted in addition to cycle-by-cycle behavior of the large number of cores which superlinearly increases the number of simulation cycles per iteration of the design exploration. Third, single thread performance does not scale linearly with number of hardware threads per core and number of cores due to memory wall effect. This means that at every step of the design process designers must ensure that single thread performance is not unacceptably slowed down while increasing overall throughput. While all these factors affect design decisions in both high performance and embedded many-core processors, the design of embedded processors required for complex embedded applications such as networking, smart power grids, battlefield decision-making, consumer electronics and biomedical devices to name a few, is fundamentally different from its high performance counterpart because of the need to consider (i) low power and (ii) real-time operations. This implies the design objective for embedded many-core processors cannot be to simply maximize performance, but improve it in such a way that overall power dissipation is minimized and all real-time constraints are met. This necessitates additional power estimation models right at the design stage to accurately measure the cost and reliability of all the candidate designs during the exploration phase. In this dissertation, a statistical machine learning (SML) based design exploration framework is presented which employs an execution-driven cycle- accurate simulator to accurately measure power and performance of embedded many-core processors. The embedded many-core processor domain is Network Processors (NePs) used to processed network IP packets. Future generation NePs required to operate at terabits per second network speeds captures all the aspects of a complex embedded application consisting of shared data structures, large volume of compute-intensive and data-intensive real-time bound tasks and a high level of task (packet) level parallelism. Statistical machine learning (SML) is used to efficiently model performance and power of candidate designs in terms of wide ranges of micro-architectural parameters. The method inherently minimizes number of in-loop simulations in the exploration framework and also efficiently captures the non-linear interactions between the micro-architectural design parameters. To ensure scalability, the design space is partitioned into (i) core-level micro-architectural parameters to optimize single core architectures subject to the real-time constraints and (ii) shared memory level micro- architectural parameters to explore the shared interconnection network and shared cache memory architectures and achieves overall optimality. The cost function of our exploration algorithm is the total power dissipation which is minimized, subject to the constraints of real-time throughput (as determined from the terabit optical network router line-speed) required in IP packet processing embedded application

    Classification algorithms for Big Data with applications in the urban security domain

    Get PDF
    A classification algorithm is a versatile tool, that can serve as a predictor for the future or as an analytical tool to understand the past. Several obstacles prevent classification from scaling to a large Volume, Velocity, Variety or Value. The aim of this thesis is to scale distributed classification algorithms beyond current limits, assess the state-of-practice of Big Data machine learning frameworks and validate the effectiveness of a data science process in improving urban safety. We found in massive datasets with a number of large-domain categorical features a difficult challenge for existing classification algorithms. We propose associative classification as a possible answer, and develop several novel techniques to distribute the training of an associative classifier among parallel workers and improve the final quality of the model. The experiments, run on a real large-scale dataset with more than 4 billion records, confirmed the quality of the approach. To assess the state-of-practice of Big Data machine learning frameworks and streamline the process of integration and fine-tuning of the building blocks, we developed a generic, self-tuning tool to extract knowledge from network traffic measurements. The result is a system that offers human-readable models of the data with minimal user intervention, validated by experiments on large collections of real-world passive network measurements. A good portion of this dissertation is dedicated to the study of a data science process to improve urban safety. First, we shed some light on the feasibility of a system to monitor social messages from a city for emergency relief. We then propose a methodology to mine temporal patterns in social issues, like crimes. Finally, we propose a system to integrate the findings of Data Science on the citizenry’s perception of safety and communicate its results to decision makers in a timely manner. We applied and tested the system in a real Smart City scenario, set in Turin, Italy

    Intrusion Detection at Packet Level by Unsupervised Architectures

    Get PDF
    Intrusion Detection Systems (IDS’s) monitor the traffic in computer networks for detecting suspect activities. Connectionist techniques can support the development of IDS’s by modeling ‘normal’ traffic. This paper presents the application of some unsupervised neural methods to a packet dataset for the first time. This work considers three unsupervised neural methods, namely, Vector Quantization (VQ), Self-Organizing Maps (SOM) and Auto-Associative Back-Propagation (AABP) networks. The former paradigm proves quite powerful in supporting the basic space-spanning mechanism to sift normal traffic from anomalous traffic. The SOM attains quite acceptable results in dealing with some anomalies while it fails in dealing with some others. The AABP model effectively drives a nonlinear compression paradigm and eventually yields a compact visualization of the network traffic progression

    AI Solutions for MDS: Artificial Intelligence Techniques for Misuse Detection and Localisation in Telecommunication Environments

    Get PDF
    This report considers the application of Articial Intelligence (AI) techniques to the problem of misuse detection and misuse localisation within telecommunications environments. A broad survey of techniques is provided, that covers inter alia rule based systems, model-based systems, case based reasoning, pattern matching, clustering and feature extraction, articial neural networks, genetic algorithms, arti cial immune systems, agent based systems, data mining and a variety of hybrid approaches. The report then considers the central issue of event correlation, that is at the heart of many misuse detection and localisation systems. The notion of being able to infer misuse by the correlation of individual temporally distributed events within a multiple data stream environment is explored, and a range of techniques, covering model based approaches, `programmed' AI and machine learning paradigms. It is found that, in general, correlation is best achieved via rule based approaches, but that these suffer from a number of drawbacks, such as the difculty of developing and maintaining an appropriate knowledge base, and the lack of ability to generalise from known misuses to new unseen misuses. Two distinct approaches are evident. One attempts to encode knowledge of known misuses, typically within rules, and use this to screen events. This approach cannot generally detect misuses for which it has not been programmed, i.e. it is prone to issuing false negatives. The other attempts to `learn' the features of event patterns that constitute normal behaviour, and, by observing patterns that do not match expected behaviour, detect when a misuse has occurred. This approach is prone to issuing false positives, i.e. inferring misuse from innocent patterns of behaviour that the system was not trained to recognise. Contemporary approaches are seen to favour hybridisation, often combining detection or localisation mechanisms for both abnormal and normal behaviour, the former to capture known cases of misuse, the latter to capture unknown cases. In some systems, these mechanisms even work together to update each other to increase detection rates and lower false positive rates. It is concluded that hybridisation offers the most promising future direction, but that a rule or state based component is likely to remain, being the most natural approach to the correlation of complex events. The challenge, then, is to mitigate the weaknesses of canonical programmed systems such that learning, generalisation and adaptation are more readily facilitated

    Forging a deep learning neural network intrusion detection framework to curb the distributed denial of service attack

    Get PDF
    Today’s popularity of the internet has since proven an effective and efficient means of information sharing. However, this has consequently advanced the proliferation of adversaries who aim at unauthorized access to information being shared over the internet medium. These are achieved via various means one of which is the distributed denial of service attacks-which has become a major threat to the electronic society. These are carefully crafted attacks of large magnitude that possess the capability to wreak havoc at very high levels and national infrastructures. This study posits intelligent systems via the use of machine learning frameworks to detect such. We employ the deep learning approach to distinguish between benign exchange of data and malicious attacks from data traffic. Results shows consequent success in the employment of deep learning neural network to effectively differentiate between acceptable and non-acceptable data packets (intrusion) on a network data traffic
    corecore