61 research outputs found

    CUDA-Optimized GPU Acceleration of 3GPP 3D Channel Model Simulations for 5G Network Planning

    Get PDF
    Simulation of massive multiple-input multiple-output (MIMO) channel models is becoming increasingly important for testing and validation of fifth-generation new radio (5G NR) wireless networks and beyond. However, simulation performance tends to be limited when modeling a large number of antenna elements combined with a complex and realistic representation of propagation conditions. In this paper, we propose an efficient implementation of a 3rd Generation Partnership Project (3GPP) three-dimensional (3D) channel model, specifically designed for graphics processing unit (GPU) platforms, with the goal of minimizing the computational time required for channel simulation. The channel model is highly parameterized to encompass a wide range of configurations required for real-world optimized 5G NR network deployments. We use several compute unified device architecture (CUDA)-based optimization techniques to exploit the parallelism and memory hierarchy of the GPU. Experimental data show that the developed system achieves an overall speedup of about 240× compared to the original C++ model executed on an Intel processor. Compared to a design previously accelerated on a datacenter-class field programmable gate array (FPGA), the GPU design has 33.3 % higher single precision performance, but for 7.5 % higher power consumption. The proposed GPU accelerator can provide fast and accurate channel simulations for 5G NR network planning and optimization

    Applying the finite-difference time-domain to the modelling of large-scale radio channels

    Get PDF
    A thesis submitted to the University of Bedfordshire, in partial fulfilment of the requirements for the degree of Doctor of Philosophy (PhD)Finite-difference models have been used for nearly 40 years to solve electromagnetic problems of heterogeneous nature. Further, these techniques are well known for being computationally expensive, as well as subject to various numerical artifacts. However, little is yet understood about the errors arising in the simulation of wideband sources with the finitedifference time-domain (FDTD) method. Within this context, the focus of this thesis is on two different problems. On the one hand, the speed and accuracy of current FDTD implementations is analysed and increased. On the other hand, the distortion of numerical pulses is characterised and mitigation techniques proposed. In addition, recent developments in general-purpose computing on graphics processing units (GPGPU) have unveiled new methods for the efficient implementation of FDTD algorithms. Therefore, this thesis proposes specific GPU-based guidelines for the implementation of the standard FDTD. Then, metaheuristics are used for the calibration of a FDTD-based narrowband simulator. Regarding the simulation of wideband sources, this thesis uses first Lagrange multipliers to characterise the extrema of the numerical group velocity. Then, the spread of numerical Gaussian pulses is characterised analytically in terms of the FDTD grid parameters. The usefulness of the proposed solutions to the previously described problems is illustrated in this thesis using coverage and wideband predictions in large-scale scenarios. In particular, the indoor-to-outdoor radio channel in residential areas is studied. Furthermore, coverage and wideband measurements have also been used to validate the predictions. As a result of all the above, this thesis introduces first an efficient and accurate FDTD simulator. Then, it characterises analytically the propagation of numerical pulses. Finally, the narrowband and wideband indoorto-outdoor channels are modeled using the developed techniques

    Antennas and Propagation for UAV-Assisted Wireless Networks Towards Next Generation Mobile Systems

    Get PDF
    Unmanned Aerial Vehicles (UAV), also known as "drones", are attracting increasing attention as enablers for many technical applications and services, and this trend is likely to continue in the near future. UAVs are expected to be used extensively in civil and military applications where aerial surveillance and assistance in emergency situations are key factors. UAVs can be more useful and flexible in reaction to specific events, like natural disasters and terrorist attacks since they are faster to deploy, easier to reconfigure and assumed to have better communication means due to their improved position in the sky, improved visibility over ground, and reduced hindrance for propagation. In this regard, UAV enabled communications emerge as one of the most promising solutions for setting-up the next-generation mobile networks, with a special focus on the extension of coverage and capacity of mobile radio networks for 5G applications and beyond. However, air-to-ground (A2G) propagation conditions are likely to be different and more challenging than those experienced by traditional piloted aircraft. For this reason, knowledge of this specific propagation channel – together with the UAV antenna design and placement - is paramount for defining an efficient communication system and for evaluating its performance. This PhD thesis tackles this challenge, and it aims at further investigating the narrowband properties of the air-to-ground propagation channel by means of GPU accelerated ray launching simulations for 5G communications and beyond. As a conclusion, this PhD thesis might bring deep insights into the air-to-ground channel characteristics and UAV antenna design, which can be helpful for designing UAV communication networks and evaluating or optimising their performances in a fast and reliable manner, with no need for exhausting – multiple - in-field measurement campaigns
    • …
    corecore