1,607 research outputs found

    A Novel Approach to Monitoring the Curing of Epoxy in Closed Tools by Use of Ultrasonic Spectroscopy

    Get PDF
    The increasing use of composite materials has led to a greater demand for efficient curing cycles to reduce costs and speed up production cycles in manufacturing. One method to achieve this goal is in-line cure monitoring to determine the exact curing time. This article proposes a novel method through which to monitor the curing process inside closed tools by employing ultrasonic spectroscopy. A simple experiment is used to demonstrate the change in the ultrasonic spectrum during the cure cycle of an epoxy. The results clearly reveal a direct correlation between the amplitude and state of cure. The glass transition point is indicated by a global minimum of the reflected amplitude

    Pulse Ultrasonic Cure Monitoring of the Pultrusion Process

    Get PDF
    This article discusses the results of a series of experiments on pulse ultrasonic cure monitoring of carbon fiber reinforced plastics applied to the pultrusion process. The aim of this study is to validate the hypothesis that pulse ultrasonic cure monitoring can be applied (a) for profiles having small cross sections such as 7 mm 0.5 mm and (b) within the environment of the pultrusion process. Ultrasonic transducers are adhesively bonded to the pultrusion tool as actuators and sensors. The time-of-flight and the amplitude of an ultrasonic wave are analyzed to deduce the current curing state of the epoxy matrix. The experimental results show that ultrasonic cure monitoring is indeed applicable even to very thin cross sections. However, significant challenges can be reported when the techniques are used during the pultrusion process

    Sensor Design Optimization for Ultrasonic Spectroscopy Cure Monitoring

    Get PDF
    In the field of cure monitoring, resonant ultrasonic cure monitoring is a unique technique to measure the progression of cure of composites in fully or partially closed tools. It allows for the use of electronic hardware that is less sophisticated than traditional pulse-based ultrasonic systems to obtain accurate results. While this technique is not new, it has been used very rarely. One reason for this is the lack of optimized sensors. Commercially available sensors are optimized for pulse-based ultrasonic testing. This paper establishes a possible optimized sensor design for resonant ultrasound cure monitoring using a multi-parameter FE model

    Advances in structural analysis and process monitoring of thermoplastic composite pipes.

    Get PDF
    Thermoplastic composite pipes (TCP) in comparison to other pipes have proven beneficial features due to its flexibility which includes being fit for purpose, lightweight and no corrosion. However, during the manufacturing of TCP which involves the consolidation process, certain defects may be induced in it because of certain parameters, and this can affect the performance of the pipe in the long run as the induced defects might lead to in-service defects. Current techniques used in the industry are facing challenges with on-the-spot detection in a continuous manufacturing system. In TCP manufacturing process, the pipe is regularly monitored. When a defect is noticed, the whole process stops, and the appropriate action is taken. However, shutting down the process is costly; hence it is vital to decrease the downtime during manufacturing to the barest minimum. The solutions include optimizing the process for reduction in the manufacturing defects amount and thoroughly understanding the effect of parameters which causes certain defect types in the pipe. This review covers the current state-of-the-art and challenges associated with characterizing the identified manufacturing induced defects in TCP. It discusses and describes all effective consolidation monitoring strategy for early detection of these defects during manufacturing through the application of suitable sensing technology that is compatible with the TCP. It can be deduced that there is a correlation between manufacturing process to the performance of the final part and selection of characterization technique as well as optimizing process parameters

    Kinematics of Inter-Ply Interfaces In Composite Manufacturing

    Get PDF
    The ubiquitous usage of polymer matrix composites in many applications demands a comprehensive understanding of composite interfaces and processing induced residual stresses, which critically affect both the manufacturing processes and the deformation mechanisms. Processing induced residual stresses are often responsible for causing warping, delamination, and dimensional instability in composite structures. This research includes new in-situ experimental approaches, cure cycle design, interface modification, and thermomechanical modeling for developing a fundamental understanding of the cure kinetics during composite manufacturing. Strains, ply-movement, and formation of defects are observed in-situ using digital image correlation (DIC) during the autoclave cure cycle for the first time. The processing-induced defects in the composite are further characterized by X-ray micro-computed tomography (micro-CT). A non-destructive method is developed to calculate residual stresses using DIC Strains in combination with temperature-dependent moduli obtained from Dynamic Mechanical Analysis (DMA) and Classical Laminate Theory (CLT). Cure cycle design with interrupted cure and interface modification with ZnO nanorods experiments are developed to reduce these processing- induced residual stresses and thereby increase laminate strength. The experimental results are validated through thermomechanical modeling of the composite cure process

    Detection of subsurface anomalies in fiber-reinforced polymer (FRP) wrapped timber bridge components using infrared thermography

    Get PDF
    This thesis presents the results of an experimental study on the use of Infrared Thermography technique for detection of subsurface anomalies in fiber reinforced polymer (FRP) wrapped timber bridge components. An extensive literature review on the application of various nondestructive evaluation techniques to composite structures has also been presented.;Simulated subsurface delaminations were constructed in the laboratory in timber piles wrapped with FRP composite fabric. The delaminations varied in size, thickness, and severity. These delaminations were placed between the 1/8&inches; thick FRP wrap and timber surface. The thermal images from the delaminated specimens were compared with thermal images from undamaged specimens to study the effect of subsurface anomalies. In addition, several field tests were conducted using the infrared imaging system on three timber railroad bridges located in Moorefield, West Virginia that were reinforced with FRP composite fabric. The field test data was used to detect debonds at the composite-timber interface and study the effect of environmental parameters on infrared images.;This study shows that the infrared thermography technique can be used to effectively to detect subsurface delaminations in timber components wrapped with FRP composite fabric. The study also shows the effect of different parameters (environmental conditions, heat source, etc.) on the clarity of infrared images

    Analysis of the Response of Modal Parameters to Damage in CFRP Laminates Using a Novel Modal Identification Method

    Get PDF
    Nowadays, composite materials are widely used in several industries, e.g. the aeronautical, automotive, and marine, due to their excellent properties, such as stiffness and strength to weight ratios and high resistance to corrosion. However, they are prone to develop Barely Visible Impact Damage (BVID) from low to medium energy impacts (i.e. 1 – 10 m/s and 11 – 30 m/s respectively) that are reported to occur during both service and maintenance, such as bird strike; hailstones and tool drops. Therefore, Structural Health Monitoring (SHM) techniques have been developed to allow identifying damage at an early stage, in an attempt to avoid catastrophic consequences. Vibration measurement was conducted on healthy and damaged Carbon Fibre Reinforced Polymers (CFRPs) specimens. Damage is introduced to the specimen through a static indentation and the work done by the hemispherical indenter measured. This test was mainly for the purpose of damage introduction in the test samples. In this work, the effects of damage on the individual mode were studied to understand the response pattern of the modal parameters. It is intended that the current study will inform the development of a new damage identification method based on the variations between healthy and damaged specimen’s dynamic results. A new modal identification method (“Elliptical Plane”) that uses an alternative plot of the receptance has been developed in this work. The Elliptical Plane method used the energy dissipated per cycle of vibration as a starting point, to identify modal constants from Frequency Response Functions (FRFs). In comparison with the method of inverse, this new method produces accurate results, for systems that are lightly damped with its modes well-spaced. The sine of the phase of the receptance is plotted against the amplitude of the receptance, through which damping was calculated from the slope of a linear fit to the resulting plot. The results show that, there are other relevant properties of the plot that were not yet delve into by researchers. The shape of the plot is elliptical, near the resonant frequencies, whereby both parts of the modal constants (real and imaginary) can be determined from numerical curve-fitting. The method offers a new perspective on the way the receptance may be represented, in the Elliptical Plane, which may bring valuable insights for other researchers in the field. The novel method is discussed through both numerical and experimental examples. It is a simple method and easy to use. Interestingly, as the energy level increases, the percentage changes in both the modal frequency and damping increases. The linear equations reveal that there is a correlation between the increase in energy and the percentage variation in modal frequency and damping, especially from a threshold energy level determined to be between 15J and 20J for the analysed cases. Finally, modal identification is conducted on the healthy and damaged specimens, and the results were analysed with BETAlab software and the Elliptical Modal identification method. It was observed that the Elliptical Modal identification method provides some interesting results. For instance, a comparison between the modal damping from the ellipse and BETAlab methods revealed that, the level of reduction in the modal damping from the ellipse method is higher than that of the BETAlab. This behaviour offers a promising future in the area of damage identification in structures
    • …
    corecore