10,369 research outputs found

    Structural Dynamical Monitoring and Fault Diagnosis

    Get PDF

    Investigation of Temperature Effects into Long-Span Bridges via Hybrid Sensing and Supervised Regression Models

    Get PDF
    Temperature is an important environmental factor for long-span bridges because it induces thermal loads on structural components that cause considerable displacements, stresses, and structural damage. Hence, it is critical to acquire up-to-date information on the status, sustainability, and serviceability of long-span bridges under daily and seasonal temperature fluctuations. This paper intends to investigate the effects of temperature variability on structural displacements obtained from remote sensing and represent their relationship using supervised regression models. In contrast to other studies in this field, one of the contributions of this paper is to leverage hybrid sensing as a combination of contact and non-contact sensors for measuring temperature data and structural responses. Apart from temperature, other unmeasured environmental and operational conditions may affect structural displacements of long-span bridges separately or simultaneously. For this issue, this paper incorporates a correlation analysis between the measured predictor (temperature) and response (displacement) data using a linear correlation measure, the Pearson correlation coefficient, as well as nonlinear correlation measures, namely the Spearman and Kendall correlation coefficients and the maximal information criterion, to determine whether the measured environmental factor is dominant or other unmeasured conditions affect structural responses. Finally, three supervised regression techniques based on a linear regression model, Gaussian process regression, and support vector regression are considered to model the relationship between temperature and structural displacements and to conduct the prediction process. Temperature and limited displacement data related to three long-span bridges are used to demonstrate the results of this research. The aim of this research is to assess and realize whether contact-based sensors installed in a bridge structure for measuring environmental and/or operational factors are sufficient or if it is necessary to consider further sensors and investigations

    Innovative modeling framework of chloride resistance of recycled aggregate concrete using ensemble-machine-learning methods

    Get PDF
    This study investigates the feasibility of introducing machine learning algorithms to predict the diffusion resistance to chloride penetration of recycled aggregate concrete (RAC). A total of 226 samples collated from published literature were used to train and test the developed machine learning framework, which integrated four standalone models and two ensemble models. The hyperparameters involved were fine-tuned by grid search and 10-fold cross-validation. Results showed that all the models had good performance in predicting the chloride penetration resistance of RAC and among them, the gradient boosting model outperformed the others. The water content was identified as the most critical factor affecting the chloride ion permeability of RAC based on the standardized regression coefficient analysis. The model’s interpretability was greatly improved through a two-way partial dependence analysis. Finally, based on the proposed machine learning models, a performance-based mixture design method and a service life prediction approach for RAC were developed, thereby offering novel and robust design tools for achieving more durable and resilient development goals in procuring sustainable concrete.This work was supported by the National Natural Science Foundation of China (52108123), Guangdong Basic and Applied Basic Research Foundation (2020A1515110101), and Guangdong Provincial Key Laboratory of Modern Civil Engineering Technology (2021B1212040003)
    • …
    corecore