633 research outputs found

    Automated linear regression tools improve RSSI WSN localization in multipath indoor environment

    Get PDF
    Received signal strength indication (RSSI)-based localization is emerging in wireless sensor networks (WSNs). Localization algorithms need to include the physical and hardware limitations of RSSI measurements in order to give more accurate results in dynamic real-life indoor environments. In this study, we use the Interdisciplinary Institute for Broadband Technology real-life test bed and present an automated method to optimize and calibrate the experimental data before offering them to a positioning engine. In a preprocessing localization step, we introduce a new method to provide bounds for the range, thereby further improving the accuracy of our simple and fast 2D localization algorithm based on corrected distance circles. A maximum likelihood algorithm with a mean square error cost function has a higher position error median than our algorithm. Our experiments further show that the complete proposed algorithm eliminates outliers and avoids any manual calibration procedure

    Indoor positioning with deep learning for mobile IoT systems

    Get PDF
    2022 Summer.Includes bibliographical references.The development of human-centric services with mobile devices in the era of the Internet of Things (IoT) has opened the possibility of merging indoor positioning technologies with various mobile applications to deliver stable and responsive indoor navigation and localization functionalities that can enhance user experience within increasingly complex indoor environments. But as GPS signals cannot easily penetrate modern building structures, it is challenging to build reliable indoor positioning systems (IPS). Currently, Wi-Fi sensing based indoor localization techniques are gaining in popularity as a means to build accurate IPS, benefiting from the prevalence of 802.11 family. Wi-Fi fingerprinting based indoor localization has shown remarkable performance over geometric mapping in complex indoor environments by taking advantage of pattern matching techniques. Today, the two main information extracted from Wi-Fi signals to form fingerprints are Received Signal Strength Index (RSSI) and Channel State Information (CSI) with Orthogonal Frequency-Division Multiplexing (OFDM) modulation, where the former can provide the average localization error around or under 10 meters but has low hardware and software requirements, while the latter has a higher chance to estimate locations with ultra-low distance errors but demands more resources from chipsets, firmware/software environments, etc. This thesis makes two novel contributions towards realizing viable IPS on mobile devices using RSSI and CSI information, and deep machine learning based fingerprinting. Due to the larger quantity of data and more sophisticated signal patterns to create fingerprints in complex indoor environments, conventional machine learning algorithms that need carefully engineered features suffer from the challenges of identifying features from very high dimensional data. Hence, the abilities of approximation functions generated from conventional machine learning models to estimate locations are limited. Deep machine learning based approaches can overcome these challenges to realize scalable feature pattern matching approaches such as fingerprinting. However, deep machine learning models generally require considerable memory footprint, and this creates a significant issue on resource-constrained devices such as mobile IoT devices, wearables, smartphones, etc. Developing efficient deep learning models is a critical factor to lower energy consumption for resource intensive mobile IoT devices and accelerate inference time. To address this issue, our first contribution proposes the CHISEL framework, which is a Wi-Fi RSSI- based IPS that incorporates data augmentation and compression-aware two-dimensional convolutional neural networks (2D CAECNNs) with different pruning and quantization options. The proposed model compression techniques help reduce model deployment overheads in the IPS. Unlike RSSI, CSI takes advantages of multipath signals to potentially help indoor localization algorithms achieve a higher level of localization accuracy. The compensations for magnitude attenuation and phase shifting during wireless propagation generate different patterns that can be utilized to define the uniqueness of different locations of signal reception. However, all prior work in this domain constrains the experimental space to relatively small-sized and rectangular rooms where the complexity of building interiors and dynamic noise from human activities, etc., are seldom considered. As part of our second contribution, we propose an end-to-end deep learning based framework called CSILoc for Wi-Fi CSI-based IPS on mobile IoT devices. The framework includes CSI data collection, clustering, denoising, calibration and classification, and is the first study to verify the feasibility to use CSI for floor level indoor localization with minimal knowledge of Wi-Fi access points (APs), thus avoiding security concerns during the offline data collection process

    RFID Localisation For Internet Of Things Smart Homes: A Survey

    Full text link
    The Internet of Things (IoT) enables numerous business opportunities in fields as diverse as e-health, smart cities, smart homes, among many others. The IoT incorporates multiple long-range, short-range, and personal area wireless networks and technologies into the designs of IoT applications. Localisation in indoor positioning systems plays an important role in the IoT. Location Based IoT applications range from tracking objects and people in real-time, assets management, agriculture, assisted monitoring technologies for healthcare, and smart homes, to name a few. Radio Frequency based systems for indoor positioning such as Radio Frequency Identification (RFID) is a key enabler technology for the IoT due to its costeffective, high readability rates, automatic identification and, importantly, its energy efficiency characteristic. This paper reviews the state-of-the-art RFID technologies in IoT Smart Homes applications. It presents several comparable studies of RFID based projects in smart homes and discusses the applications, techniques, algorithms, and challenges of adopting RFID technologies in IoT smart home systems.Comment: 18 pages, 2 figures, 3 table

    A Robust Zero-Calibration RF-based Localization System for Realistic Environments

    Full text link
    Due to the noisy indoor radio propagation channel, Radio Frequency (RF)-based location determination systems usually require a tedious calibration phase to construct an RF fingerprint of the area of interest. This fingerprint varies with the used mobile device, changes of the transmit power of smart access points (APs), and dynamic changes in the environment; requiring re-calibration of the area of interest; which reduces the technology ease of use. In this paper, we present IncVoronoi: a novel system that can provide zero-calibration accurate RF-based indoor localization that works in realistic environments. The basic idea is that the relative relation between the received signal strength from two APs at a certain location reflects the relative distance from this location to the respective APs. Building on this, IncVoronoi incrementally reduces the user ambiguity region based on refining the Voronoi tessellation of the area of interest. IncVoronoi also includes a number of modules to efficiently run in realtime as well as to handle practical deployment issues including the noisy wireless environment, obstacles in the environment, heterogeneous devices hardware, and smart APs. We have deployed IncVoronoi on different Android phones using the iBeacons technology in a university campus. Evaluation of IncVoronoi with a side-by-side comparison with traditional fingerprinting techniques shows that it can achieve a consistent median accuracy of 2.8m under different scenarios with a low beacon density of one beacon every 44m2. Compared to fingerprinting techniques, whose accuracy degrades by at least 156%, this accuracy comes with no training overhead and is robust to the different user devices, different transmit powers, and over temporal changes in the environment. This highlights the promise of IncVoronoi as a next generation indoor localization system.Comment: 9 pages, 13 figures, published in SECON 201

    iBeacon localization

    Get PDF

    Efficient AoA-based wireless indoor localization for hospital outpatients using mobile devices

    Get PDF
    The motivation of this work is to help outpatients find their corresponding departments or clinics, thus, it needs to provide indoor positioning services with a room-level accuracy. Unlike wireless outdoor localization that is dominated by the global positioning system (GPS), wireless indoor localization is still an open issue. Many different schemes are being developed to meet the increasing demand for indoor localization services. In this paper, we investigated the AoA-based wireless indoor localization for outpatients’ wayfinding in a hospital, where Wi-Fi access points (APs) are deployed, in line, on the ceiling. The target position can be determined by a mobile device, like a smartphone, through an efficient geometric calculation with two known APs coordinates and the angles of the incident radios. All possible positions in which the target may appear have been comprehensively investigated, and the corresponding solutions were proven to be the same. Experimental results show that localization error was less than 2.5 m, about 80% of the time, which can satisfy the outpatients’ requirements for wayfinding

    Metoda za določanje položaja v prostoru na osnovi signalov WiFi in modela zgradbe

    Full text link
    WiFi indoor localization is a difficult task due to the variability of the WiFi signal. Consequently, there have been many attempts to develop WiFi-based methods which were aided by some other means to provide accurate indoor localization. Technologies like dead reckoning and IMU sensors, crowd utilization and pattern matching, specialized Li-Fi hardware and directional antennas, etc. were used to aid the WiFi in order to develop more accurate and stable methods. The main disadvantage of such methods lies in difficult deployments due to technologies and requirements: Dead-reckoning-aided methods are not suitable for stationary objects, methods leveraging groups of people and many individuals are not best suited for home environment, Li-Fi assisted methods require mobile terminals to provide Li-Fi connectivity and therefore rule out mobile phones as the most common terminal. In the past, many fingerprinting methods were proposedthese require a survey in the area of localization during the setup phase. Unfortunately, the majority of fingerprinting-based methods do not address issues of long-term stability of the WiFi signals. Thus, they face accuracy issues a few days after the calibrationfrequent, costly and time-consuming recalibration procedures are used to address these issues. Model-based methods try to eliminate calibration procedures by simulating signal propagation. Many of the methods assume at least some parameters of propagation as fixed and therefore poorly address the issues of WiFi’s variability and long-term stability. A pure WiFi model-based method that successfully addresses these issues and requires a mobile terminal only for emitting or receiving the WiFi signals is the ultimate goal of the WiFi indoor localization. This thesis presents a novel indoor localization method, with the main intent of addressing the issues of real-world applicability. Therefore, we focused on developing a method with accuracy comparable to the state-of-the-art methods, while reducing the complexity of deployment and minimizing the required maintenance for long-term deployments. The presented method is a model-based method, implementing self-adaptive operability, i.e. it does not require any human intervention. The thesis discusses in detail the topics of the long-term stability of the WiFi signal, receiving vs. transmitting methods, the future WiFi standards, comparability of the methods and architectural aspects with respect to real-world applicability of the localization methods. Our presented method estimates the parameters of signal propagation, by knowing the positions of the access points, the architectural floor plan with the dividing walls and by monitoring power of the packets travelling between the access points. From this data propagation parameters defined in propagation model are inferred in an online manner. A device trying to define its position captures power information of the packets sent by the access points. Devices’ information on the observed power is used to determine its position by an algorithm run on the localization server. The presented WiFi method is primarily developed and evaluated in single- and multi-room office environments. The method’s ability to be easily applicable in any environment is emphasized by its evaluation in two different environments – office and residential. Between the two, no parameters were modified, thus evaluations indicate universality of the method. Furthermore, we provide evaluation also in narrow hallway because in the field of indoor localization such evaluation environments are common practice. During the evaluation of our proposed method in the office environment, we obtained an average error of 2.63 m and 3.22 m for the single- and multi-room environments respectively. Second evaluation was performed in the residential environment, for which the method or any of the parameters were not modified. Our method achieved an average evaluation error of 2.65 m with standard deviation of 1.51 m, during the four independent evaluations, each consisting of 17 localization points. High accuracy of localization, with acknowledgement to the intricate and realistic multi-room floor plan with different types of walls, realistic furniture and real-world signal interference from the neighboring apartments, proves the method’s applicability to the real-world environment. Evaluation accuracy can be compared to the state-of-the-art methods, while our easily-applicable method requires far less complicated setup procedures and/or hardware requirements. In the second part of the thesis, we generalize the WiFi method to be applicable to the frequencies other than 2.4 GHz WiFi. By defining a fusion algorithm which considers accuracy of the individual frequencies, we have defined the MFAM method: Multiple Frequency Adaptive Model-Based Indoor Localization Method. The MFAM is one of the first purely model-based approaches capable of utilizing multiple frequencies simultaneously. The MFAM method was evaluated in residential environment on two frequency bands: 868 MHz and 2.4 GHz. The method retained positive properties of our WiFi approach (e.g. pure model-based, self-adaptive operability, wide applicability on affordable hardware), while improving the accuracy due to multi-frequency fusion. The usage of multiple frequencies improved the average error of localization from 2.65 m, while using only the WiFi, down to 2.16 m, in the case of multi-frequency fusion, thus improving localization accuracy for 18%. Similar improvements were observed also for the standard deviation. Although the accuracy of the presented WiFi and MFAM methods is comparable if not better than the state-of-the-art methods, one of the most important achievements of our work is the applicability of the method to the real-world situations and its long-term stability. The definition of our method ensures that the accuracy of the method will be the same at the time it is initialized, as well as days later, without any human interaction.Določanje lokacije znotraj prostorov na podlagi WiFi signalov je zaradi variabilnosti signala WiFi težka naloga. Posledično je bilo v preteklosti veliko poizkusov razvoja WiFi metod, ki uporabljajo dodatne informacije za natančno lokalizacijo. Ocena prehojene poti in inercijski senzorji, uporaba množice ljudi in ujemanje vzorcev, tehnologija Li-Fi in usmerjene antene itd. je le nekaj v preteklosti uporabljenih načinov za dopolnitev WiFi signalov pri razvoju natančnih in stabilnih metod. Glavna slabost takih metod se kaže v zahtevnem uvajanju zaradi uporabljenih tehnologij in zahtev: metode ocene prehojene poti niso primerne za stacionarne predmete, metode, ki uporabljajo množice ljudi, niso primerne za domače okolje, Li-Fi metode zahtevajo, da so mobilni terminali opremljeni z ustreznimi sprejemniki in tako izključijo mobilne telefone kot terminale. V preteklosti so bile predlagane številne metode, ki bazirajo na prstnih odtisih signalov. Te metode zahtevajo kalibracijske meritve v prostoru v fazi implementacije metode. Večina teh metod ne naslovi vprašanj dolgoročne stabilnosti WiFi signalov, posledično se soočajo s težavami zaradi natančnosti nekaj dni po kalibraciji. Pogoste, drage in časovno potratne ponovne kalibracije so potrebne za reševanje teh težav. Metode, temelječe na matematičnih modelih, poskušajo eliminirati kalibracijske postopke s simulacijo širjenja signala. Večina teh metod vseeno privzame vsaj nekatere parametre propagacije kot fiksne in tako slabo naslovi variabilnost WiFi signalov in dolgoročno stabilnost. Izključno WiFi modelna metoda, ki uspešno naslovi te težave in zahteva, da mobilni terminal samo oddaja ali sprejema WiFi signale, je končni cilj WiFi metod za določanje položaja v zaprtih prostorih. Ta doktorska dizertacija predstavlja novo metodo za določanje pozicije znotraj prostorov, z glavnim ciljem, da naslovi težave pri realni uporabi. Zato smo se osredotočili na razvoj metode z natančnostjo, ki je primerljiva z najsodobnejšimi metodami, hkrati pa je cilj zmanjšati kompleksnost implementacije in vzdrževanje za dolgoročno uporabnost. Predstavljena metoda je modelnega tipa in implementira prilagodljivo delovanje, zato ne zahteva nobenega človeškega posredovanja. Dizertacija podrobno razpravlja o temah dolgoročne stabilnosti WiFi signalov, o metodah, temelječih na sprejemanju in oddajanju signalov, prihodnjih standardih WiFi, primerljivosti sorodnih metod in arhitekturnih vplivih z ozirom na realno uporabnost. Naša metoda predstavljena v tej nalogi oceni prametre propagacije signala iz poznavanja pozicije dostopnih točk, arhitekturnega načrta z informacijami o predelnih stenah in s pomočjo opazovanja moči paketov, ki potujejo med dostopnimi točkami. Iz teh podatkov se propagacijski parametri definirani v modelu določijo v realnem času. Naprava, ki želi določiti pozicijo zajame informacijo o moči paketov, ki jih pošiljajo dostopne točke. Te meritve so uporabljene v algoritmu za določanje pozicije naprave, ki teče na strežniku. Predstavljena metoda je bila primarno razvita in evalvirana v enosobni in večsobni postavitvi pisarniškega okolja. Sposobnost metode, da se enostavno prilagodi vsakemu okolju, je poudarjena z evalvacijo v dveh okoljih – pisarniškem in stanovanjskem. Med obema evalvacijama nismo spremenili nobenega parametra metode, kar indicira njeno univerzalnost. V nadaljevanju predstavimo tudi evalvacijo metode v dolgem hodniku, ker je v raziskovalnem področju lokalizacije znotraj prostorov tako okolje pogosto uporabljeno. Evalvacija predlagane metode v pisarniškem okolju je rezultirala v povprečni napaki 2,63 m in 3,22 m za enosobno in večsobno postavitev. Druga evalvacija je bila opravljena v stanovanjskem okolju, za katerega nismo spreminjali metode ali njenih parametrov. Naša metoda je tekom evalvacije štirih neodvisnih setov meritev, od katerih je vsak sestavljen iz 17 lokalizacijskih točk, dosegla povprečno napako lokalizacije 2,65 m s standardno deviacijo 1,51 m. Visoka natančnost lokalizacije ob upoštevanju zapletenega in realističnega večsobnega tlorisa, ki vsebuje več vrst sten, realistično pohištvo in motnje signalov iz sosednjih stanovanj, dokazuje uporabnost metode v praksi. Natančnost je primerljiva z najsodobnejšimi metodami, medtem ko naša metoda zahteva veliko manj zapletene postopke namestitve in/ali strojne zahteve. V drugem delu teze posplošimo WiFi metodo, da lahko uporablja tudi druge frekvence poleg 2,4 GHz WiFi. Z definicijo fuzijskega algoritma, ki upošteva natančnost posameznih frekvenc, smo definirali MFAM metodo – večfrekvenčno prilagodljivo modelno metodo za določanje lokacije znotraj stavb (ang. multiple frequency adaptive model-based indoor localization method). MFAM metoda predstavlja eno prvih modelnih metod, ki lahko hkrati uporablja več frekvenc. MFAM metoda je bila evalvirana v stanovanjskem okolju na dveh frekvenčnih pasovih: 868 MHz in 2,4 GHz. Metoda je ohranila pozitivne lastnosti predlagane WiFi metode (tj. izključno modelni pristop, prilagodljivo delovanje, možnost široke uporabe na dosegljivi strojni opremi), hkrati pa rezultira v boljši natančnosti zaradi fuzije signalov več frekvenc. Uporaba več frekvenc je izboljšala povprečno napako iz 2,65 m pri uporabi WiFi na 2,16 m, s čimer se izboljša natančnost lokalizacije za 18%podobne izboljšave smo opazili tudi pri standardnemu odklonu. Čeprav je natančnost predstavljenih WiFi in MFAM metod primerljiva, če ne boljša, kot trenutno najsodobnejše metode, je eden najpomembnejših dosežkov našega dela uporabnost metode v realnih situacijah in njena dolgoročna stabilnost. Definicija naše metode zagotavlja, da bo natančnost metode ob času postavitve enaka kot dneve kasneje brez človeške interakcije

    Improved trilateration for indoor localization: Neural network and centroid-based approach

    Full text link
    [EN] Location awareness is the key to success to many location-based services applications such as indoor navigation, elderly tracking, emergency management, and so on. Trilateration-based localization using received signal strength measurements is widely used in wireless sensor network-based localization and tracking systems due to its simplicity and low computational cost. However, localization accuracy obtained with the trilateration technique is generally very poor because of fluctuating nature of received signal strength measurements. The reason behind such notorious behavior of received signal strength is dynamicity in target motion and surrounding environment. In addition, the significant localization error is induced during each iteration step during trilateration, which gets propagated in the next iterations. To address this problem, this article presents an improved trilateration-based architecture named Trilateration Centroid Generalized Regression Neural Network. The proposed Trilateration Centroid Generalized Regression Neural Network-based localization algorithm inherits the simplicity and efficiency of three concepts namely trilateration, centroid, and Generalized Regression Neural Network. The extensive simulation results indicate that the proposed Trilateration Centroid Generalized Regression Neural Network algorithm demonstrates superior localization performance as compared to trilateration, and Generalized Regression Neural Network algorithm.Jondhale, SR.; Jondhale, AS.; Deshpande, PS.; Lloret, J. (2021). Improved trilateration for indoor localization: Neural network and centroid-based approach. International Journal of Distributed Sensor Networks (Online). 17(11):1-14. https://doi.org/10.1177/15501477211053997114171

    Design of linear regression based localization algorithms for wireless sensor networks

    Get PDF
    corecore