417 research outputs found

    Application-Specific Number Representation

    No full text
    Reconfigurable devices, such as Field Programmable Gate Arrays (FPGAs), enable application- specific number representations. Well-known number formats include fixed-point, floating- point, logarithmic number system (LNS), and residue number system (RNS). Such different number representations lead to different arithmetic designs and error behaviours, thus produc- ing implementations with different performance, accuracy, and cost. To investigate the design options in number representations, the first part of this thesis presents a platform that enables automated exploration of the number representation design space. The second part of the thesis shows case studies that optimise the designs for area, latency or throughput from the perspective of number representations. Automated design space exploration in the first part addresses the following two major issues: ² Automation requires arithmetic unit generation. This thesis provides optimised arithmetic library generators for logarithmic and residue arithmetic units, which support a wide range of bit widths and achieve significant improvement over previous designs. ² Generation of arithmetic units requires specifying the bit widths for each variable. This thesis describes an automatic bit-width optimisation tool called R-Tool, which combines dynamic and static analysis methods, and supports different number systems (fixed-point, floating-point, and LNS numbers). Putting it all together, the second part explores the effects of application-specific number representation on practical benchmarks, such as radiative Monte Carlo simulation, and seismic imaging computations. Experimental results show that customising the number representations brings benefits to hardware implementations: by selecting a more appropriate number format, we can reduce the area cost by up to 73.5% and improve the throughput by 14.2% to 34.1%; by performing the bit-width optimisation, we can further reduce the area cost by 9.7% to 17.3%. On the performance side, hardware implementations with customised number formats achieve 5 to potentially over 40 times speedup over software implementations

    FPGA implementations for parallel multidimensional filtering algorithms

    Get PDF
    PhD ThesisOne and multi dimensional raw data collections introduce noise and artifacts, which need to be recovered from degradations by an automated filtering system before, further machine analysis. The need for automating wide-ranged filtering applications necessitates the design of generic filtering architectures, together with the development of multidimensional and extensive convolution operators. Consequently, the aim of this thesis is to investigate the problem of automated construction of a generic parallel filtering system. Serving this goal, performance-efficient FPGA implementation architectures are developed to realize parallel one/multi-dimensional filtering algorithms. The proposed generic architectures provide a mechanism for fast FPGA prototyping of high performance computations to obtain efficiently implemented performance indices of area, speed, dynamic power, throughput and computation rates, as a complete package. These parallel filtering algorithms and their automated generic architectures tackle the major bottlenecks and limitations of existing multiprocessor systems in wordlength, input data segmentation, boundary conditions as well as inter-processor communications, in order to support high data throughput real-time applications of low-power architectures using a Xilinx Virtex-6 FPGA board. For one-dimensional raw signal filtering case, mathematical model and architectural development of the generalized parallel 1-D filtering algorithms are presented using the 1-D block filtering method. Five generic architectures are implemented on a Virtex-6 ML605 board, evaluated and compared. A complete set of results on area, speed, power, throughput and computation rates are obtained and discussed as performance indices for the 1-D convolution architectures. A successful application of parallel 1-D cross-correlation is demonstrated. For two dimensional greyscale/colour image processing cases, new parallel 2-D/3-D filtering algorithms are presented and mathematically modelled using input decimation and output image reconstruction by interpolation. Ten generic architectures are implemented on the Virtex-6 ML605 board, evaluated and compared. Key results on area, speed, power, throughput and computation rate are obtained and discussed as performance indices for the 2-D convolution architectures. 2-D image reconfigurable processors are developed and implemented using single, dual and quad MAC FIR units. 3-D Colour image processors are devised to act as 3-D colour filtering engines. A 2-D cross-correlator parallel engine is successfully developed as a parallel 2-D matched filtering algorithm for locating any MRI slice within a MRI data stack library. Twelve 3-D MRI filtering operators are plugged in and adapted to be suitable for biomedical imaging, including 3-D edge operators and 3-D noise smoothing operators. Since three dimensional greyscale/colour volumetric image applications are computationally intensive, a new parallel 3-D/4-D filtering algorithm is presented and mathematically modelled using volumetric data image segmentation by decimation and output reconstruction by interpolation, after simultaneously and independently performing 3-D filtering. Eight generic architectures are developed and implemented on the Virtex-6 board, including 3-D spatial and FFT convolution architectures. Fourteen 3-D MRI filtering operators are plugged and adapted for this particular biomedical imaging application, including 3-D edge operators and 3-D noise smoothing operators. Three successful applications are presented in 4-D colour MRI (fMRI) filtering processors, k-space MRI volume data filter and 3-D cross-correlator.IRAQI Government

    Cross-Layer Rapid Prototyping and Synthesis of Application-Specific and Reconfigurable Many-accelerator Platforms

    Get PDF
    Technological advances of recent years laid the foundation consolidation of informatisationof society, impacting on economic, political, cultural and socialdimensions. At the peak of this realization, today, more and more everydaydevices are connected to the web, giving the term ”Internet of Things”. The futureholds the full connection and interaction of IT and communications systemsto the natural world, delimiting the transition to natural cyber systems and offeringmeta-services in the physical world, such as personalized medical care, autonomoustransportation, smart energy cities etc. . Outlining the necessities of this dynamicallyevolving market, computer engineers are required to implement computingplatforms that incorporate both increased systemic complexity and also cover awide range of meta-characteristics, such as the cost and design time, reliabilityand reuse, which are prescribed by a conflicting set of functional, technical andconstruction constraints. This thesis aims to address these design challenges bydeveloping methodologies and hardware/software co-design tools that enable therapid implementation and efficient synthesis of architectural solutions, which specifyoperating meta-features required by the modern market. Specifically, this thesispresents a) methodologies to accelerate the design flow for both reconfigurableand application-specific architectures, b) coarse-grain heterogeneous architecturaltemplates for processing and communication acceleration and c) efficient multiobjectivesynthesis techniques both at high abstraction level of programming andphysical silicon level.Regarding to the acceleration of the design flow, the proposed methodologyemploys virtual platforms in order to hide architectural details and drastically reducesimulation time. An extension of this framework introduces the systemicco-simulation using reconfigurable acceleration platforms as co-emulation intermediateplatforms. Thus, the development cycle of a hardware/software productis accelerated by moving from a vertical serial flow to a circular interactive loop.Moreover the simulation capabilities are enriched with efficient detection and correctiontechniques of design errors, as well as control methods of performancemetrics of the system according to the desired specifications, during all phasesof the system development. In orthogonal correlation with the aforementionedmethodological framework, a new architectural template is proposed, aiming atbridging the gap between design complexity and technological productivity usingspecialized hardware accelerators in heterogeneous systems-on-chip and networkon-chip platforms. It is presented a novel co-design methodology for the hardwareaccelerators and their respective programming software, including the tasks allocationto the available resources of the system/network. The introduced frameworkprovides implementation techniques for the accelerators, using either conventionalprogramming flows with hardware description language or abstract programmingmodel flows, using techniques from high-level synthesis. In any case, it is providedthe option of systemic measures optimization, such as the processing speed,the throughput, the reliability, the power consumption and the design silicon area.Finally, on addressing the increased complexity in design tools of reconfigurablesystems, there are proposed novel multi-objective optimization evolutionary algo-rithms which exploit the modern multicore processors and the coarse-grain natureof multithreaded programming environments (e.g. OpenMP) in order to reduce theplacement time, while by simultaneously grouping the applications based on theirintrinsic characteristics, the effectively explore the design space effectively.The efficiency of the proposed architectural templates, design tools and methodologyflows is evaluated in relation to the existing edge solutions with applicationsfrom typical computing domains, such as digital signal processing, multimedia andarithmetic complexity, as well as from systemic heterogeneous environments, suchas a computer vision system for autonomous robotic space navigation and manyacceleratorsystems for HPC and workstations/datacenters. The results strengthenthe belief of the author, that this thesis provides competitive expertise to addresscomplex modern - and projected future - design challenges.Οι τεχνολογικές εξελίξεις των τελευταίων ετών έθεσαν τα θεμέλια εδραίωσης της πληροφοριοποίησης της κοινωνίας, επιδρώντας σε οικονομικές,πολιτικές, πολιτιστικές και κοινωνικές διαστάσεις. Στο απόγειο αυτής τη ςπραγμάτωσης, σήμερα, ολοένα και περισσότερες καθημερινές συσκευές συνδέονται στο παγκόσμιο ιστό, αποδίδοντας τον όρο «Ίντερνετ των πραγμάτων».Το μέλλον επιφυλάσσει την πλήρη σύνδεση και αλληλεπίδραση των συστημάτων πληροφορικής και επικοινωνιών με τον φυσικό κόσμο, οριοθετώντας τη μετάβαση στα συστήματα φυσικού κυβερνοχώρου και προσφέροντας μεταυπηρεσίες στον φυσικό κόσμο όπως προσωποποιημένη ιατρική περίθαλψη, αυτόνομες μετακινήσεις, έξυπνες ενεργειακά πόλεις κ.α. . Σκιαγραφώντας τις ανάγκες αυτής της δυναμικά εξελισσόμενης αγοράς, οι μηχανικοί υπολογιστών καλούνται να υλοποιήσουν υπολογιστικές πλατφόρμες που αφενός ενσωματώνουν αυξημένη συστημική πολυπλοκότητα και αφετέρου καλύπτουν ένα ευρύ φάσμα μεταχαρακτηριστικών, όπως λ.χ. το κόστος σχεδιασμού, ο χρόνος σχεδιασμού, η αξιοπιστία και η επαναχρησιμοποίηση, τα οποία προδιαγράφονται από ένα αντικρουόμενο σύνολο λειτουργικών, τεχνολογικών και κατασκευαστικών περιορισμών. Η παρούσα διατριβή στοχεύει στην αντιμετώπιση των παραπάνω σχεδιαστικών προκλήσεων, μέσω της ανάπτυξης μεθοδολογιών και εργαλείων συνσχεδίασης υλικού/λογισμικού που επιτρέπουν την ταχεία υλοποίηση καθώς και την αποδοτική σύνθεση αρχιτεκτονικών λύσεων, οι οποίες προδιαγράφουν τα μετα-χαρακτηριστικά λειτουργίας που απαιτεί η σύγχρονη αγορά. Συγκεκριμένα, στα πλαίσια αυτής της διατριβής, παρουσιάζονται α) μεθοδολογίες επιτάχυνσης της ροής σχεδιασμού τόσο για επαναδιαμορφούμενες όσο και για εξειδικευμένες αρχιτεκτονικές, β) ετερογενή αδρομερή αρχιτεκτονικά πρότυπα επιτάχυνσης επεξεργασίας και επικοινωνίας και γ) αποδοτικές τεχνικές πολυκριτηριακής σύνθεσης τόσο σε υψηλό αφαιρετικό επίπεδο προγραμματισμού,όσο και σε φυσικό επίπεδο πυριτίου.Αναφορικά προς την επιτάχυνση της ροής σχεδιασμού, προτείνεται μια μεθοδολογία που χρησιμοποιεί εικονικές πλατφόρμες, οι οποίες αφαιρώντας τις αρχιτεκτονικές λεπτομέρειες καταφέρνουν να μειώσουν σημαντικά το χρόνο εξομοίωσης. Παράλληλα, εισηγείται η συστημική συν-εξομοίωση με τη χρήση επαναδιαμορφούμενων πλατφορμών, ως μέσων επιτάχυνσης. Με αυτόν τον τρόπο, ο κύκλος ανάπτυξης ενός προϊόντος υλικού, μετατεθειμένος από την κάθετη σειριακή ροή σε έναν κυκλικό αλληλεπιδραστικό βρόγχο, καθίσταται ταχύτερος, ενώ οι δυνατότητες προσομοίωσης εμπλουτίζονται με αποδοτικότερες μεθόδους εντοπισμού και διόρθωσης σχεδιαστικών σφαλμάτων, καθώς και μεθόδους ελέγχου των μετρικών απόδοσης του συστήματος σε σχέση με τις επιθυμητές προδιαγραφές, σε όλες τις φάσεις ανάπτυξης του συστήματος. Σε ορθογώνια συνάφεια με το προαναφερθέν μεθοδολογικό πλαίσιο, προτείνονται νέα αρχιτεκτονικά πρότυπα που στοχεύουν στη γεφύρωση του χάσματος μεταξύ της σχεδιαστικής πολυπλοκότητας και της τεχνολογικής παραγωγικότητας, με τη χρήση συστημάτων εξειδικευμένων επιταχυντών υλικού σε ετερογενή συστήματα-σε-ψηφίδα καθώς και δίκτυα-σε-ψηφίδα. Παρουσιάζεται κατάλληλη μεθοδολογία συν-σχεδίασης των επιταχυντών υλικού και του λογισμικού προκειμένου να αποφασισθεί η κατανομή των εργασιών στους διαθέσιμους πόρους του συστήματος/δικτύου. Το μεθοδολογικό πλαίσιο προβλέπει την υλοποίηση των επιταχυντών είτε με συμβατικές μεθόδους προγραμματισμού σε γλώσσα περιγραφής υλικού είτε με αφαιρετικό προγραμματιστικό μοντέλο με τη χρήση τεχνικών υψηλού επιπέδου σύνθεσης. Σε κάθε περίπτωση, δίδεται η δυνατότητα στο σχεδιαστή για βελτιστοποίηση συστημικών μετρικών, όπως η ταχύτητα επεξεργασίας, η ρυθμαπόδοση, η αξιοπιστία, η κατανάλωση ενέργειας και η επιφάνεια πυριτίου του σχεδιασμού. Τέλος, προκειμένου να αντιμετωπισθεί η αυξημένη πολυπλοκότητα στα σχεδιαστικά εργαλεία επαναδιαμορφούμενων συστημάτων, προτείνονται νέοι εξελικτικοί αλγόριθμοι πολυκριτηριακής βελτιστοποίησης, οι οποίοι εκμεταλλευόμενοι τους σύγχρονους πολυπύρηνους επεξεργαστές και την αδρομερή φύση των πολυνηματικών περιβαλλόντων προγραμματισμού (π.χ. OpenMP), μειώνουν το χρόνο επίλυσης του προβλήματος της τοποθέτησης των λογικών πόρων σε φυσικούς,ενώ ταυτόχρονα, ομαδοποιώντας τις εφαρμογές βάση των εγγενών χαρακτηριστικών τους, διερευνούν αποτελεσματικότερα το χώρο σχεδίασης.Η αποδοτικότητά των προτεινόμενων αρχιτεκτονικών προτύπων και μεθοδολογιών επαληθεύτηκε σε σχέση με τις υφιστάμενες λύσεις αιχμής τόσο σε αυτοτελής εφαρμογές, όπως η ψηφιακή επεξεργασία σήματος, τα πολυμέσα και τα προβλήματα αριθμητικής πολυπλοκότητας, καθώς και σε συστημικά ετερογενή περιβάλλοντα, όπως ένα σύστημα όρασης υπολογιστών για αυτόνομα διαστημικά ρομποτικά οχήματα και ένα σύστημα πολλαπλών επιταχυντών υλικού για σταθμούς εργασίας και κέντρα δεδομένων, στοχεύοντας εφαρμογές υψηλής υπολογιστικής απόδοσης (HPC). Τα αποτελέσματα ενισχύουν την πεποίθηση του γράφοντα, ότι η παρούσα διατριβή παρέχει ανταγωνιστική τεχνογνωσία για την αντιμετώπιση των πολύπλοκων σύγχρονων και προβλεπόμενα μελλοντικών σχεδιαστικών προκλήσεων

    Parallelization of dynamic programming recurrences in computational biology

    Get PDF
    The rapid growth of biosequence databases over the last decade has led to a performance bottleneck in the applications analyzing them. In particular, over the last five years DNA sequencing capacity of next-generation sequencers has been doubling every six months as costs have plummeted. The data produced by these sequencers is overwhelming traditional compute systems. We believe that in the future compute performance, not sequencing, will become the bottleneck in advancing genome science. In this work, we investigate novel computing platforms to accelerate dynamic programming algorithms, which are popular in bioinformatics workloads. We study algorithm-specific hardware architectures that exploit fine-grained parallelism in dynamic programming kernels using field-programmable gate arrays: FPGAs). We advocate a high-level synthesis approach, using the recurrence equation abstraction to represent dynamic programming and polyhedral analysis to exploit parallelism. We suggest a novel technique within the polyhedral model to optimize for throughput by pipelining independent computations on an array. This design technique improves on the state of the art, which builds latency-optimal arrays. We also suggest a method to dynamically switch between a family of designs using FPGA reconfiguration to achieve a significant performance boost. We have used polyhedral methods to parallelize the Nussinov RNA folding algorithm to build a family of accelerators that can trade resources for parallelism and are between 15-130x faster than a modern dual core CPU implementation. A Zuker RNA folding accelerator we built on a single workstation with four Xilinx Virtex 4 FPGAs outperforms 198 3 GHz Intel Core 2 Duo processors. Furthermore, our design running on a single FPGA is an order of magnitude faster than competing implementations on similar-generation FPGAs and graphics processors. Our work is a step toward the goal of automated synthesis of hardware accelerators for dynamic programming algorithms

    Heterogeneous Acceleration for 5G New Radio Channel Modelling Using FPGAs and GPUs

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Simulation and implementation of novel deep learning hardware architectures for resource constrained devices

    Get PDF
    Corey Lammie designed mixed signal memristive-complementary metal–oxide–semiconductor (CMOS) and field programmable gate arrays (FPGA) hardware architectures, which were used to reduce the power and resource requirements of Deep Learning (DL) systems; both during inference and training. Disruptive design methodologies, such as those explored in this thesis, can be used to facilitate the design of next-generation DL systems

    Flexible Hardware Architectures for Retinal Image Analysis

    Get PDF
    RÉSUMÉ Des millions de personnes autour du monde sont touchées par le diabète. Plusieurs complications oculaires telle que la rétinopathie diabétique sont causées par le diabète, ce qui peut conduire à une perte de vision irréversible ou même la cécité si elles ne sont pas traitées. Des examens oculaires complets et réguliers par les ophtalmologues sont nécessaires pour une détection précoce des maladies et pour permettre leur traitement. Comme solution préventive, un protocole de dépistage impliquant l'utilisation d'images numériques du fond de l'œil a été adopté. Cela permet aux ophtalmologistes de surveiller les changements sur la rétine pour détecter toute présence d'une maladie oculaire. Cette solution a permis d'obtenir des examens réguliers, même pour les populations des régions éloignées et défavorisées. Avec la grande quantité d'images rétiniennes obtenues, des techniques automatisées pour les traiter sont devenues indispensables. Les techniques automatisées de détection des maladies des yeux ont été largement abordées par la communauté scientifique. Les techniques développées ont atteint un haut niveau de maturité, ce qui a permis entre autre le déploiement de solutions en télémédecine. Dans cette thèse, nous abordons le problème du traitement de volumes élevés d'images rétiniennes dans un temps raisonnable dans un contexte de dépistage en télémédecine. Ceci est requis pour permettre l'utilisation pratique des techniques développées dans le contexte clinique. Dans cette thèse, nous nous concentrons sur deux étapes du pipeline de traitement des images rétiniennes. La première étape est l'évaluation de la qualité de l'image rétinienne. La deuxième étape est la segmentation des vaisseaux sanguins rétiniens. L’évaluation de la qualité des images rétinienne après acquisition est une tâche primordiale au bon fonctionnement de tout système de traitement automatique des images de la rétine. Le rôle de cette étape est de classifier les images acquises selon leurs qualités, et demander une nouvelle acquisition en cas d’image de mauvaise qualité. Plusieurs algorithmes pour évaluer la qualité des images rétiniennes ont été proposés dans la littérature. Cependant, même si l'accélération de cette tâche est requise en particulier pour permettre la création de systèmes mobiles de capture d'images rétiniennes, ce sujet n'a pas encore été abordé dans la littérature. Dans cette thèse, nous ciblons un algorithme qui calcule les caractéristiques des images pour permettre leur classification en mauvaise, moyenne ou bonne qualité. Nous avons identifié le calcul des caractéristiques de l'image comme une tâche répétitive qui nécessite une accélération. Nous nous sommes intéressés plus particulièrement à l’accélération de l’algorithme d’encodage à longueur de séquence (Run-Length Matrix – RLM). Nous avons proposé une première implémentation complètement logicielle mise en œuvre sous forme d’un système embarqué basé sur la technologie Zynq de Xilinx. Pour accélérer le calcul des caractéristiques, nous avons conçu un co-processeur capable de calculer les caractéristiques en parallèle implémenté sur la logique programmable du FPGA Zynq. Nous avons obtenu une accélération de 30,1 × pour la tâche de calcul des caractéristiques de l’algorithme RLM par rapport à son implémentation logicielle sur la plateforme Zynq. La segmentation des vaisseaux sanguins rétiniens est une tâche clé dans le pipeline du traitement des images de la rétine. Les vaisseaux sanguins et leurs caractéristiques sont de bons indicateurs de la santé de la rétine. En outre, leur segmentation peut également aider à segmenter les lésions rouges, indicatrices de la rétinopathie diabétique. Plusieurs techniques de segmentation des vaisseaux sanguins rétiniens ont été proposées dans la littérature. Des architectures matérielles ont également été proposées pour accélérer certaines de ces techniques. Les architectures existantes manquent de performances et de flexibilité de programmation, notamment pour les images de haute résolution. Dans cette thèse, nous nous sommes intéressés à deux techniques de segmentation du réseau vasculaire rétinien, la technique du filtrage adapté et la technique des opérateurs de ligne. La technique de filtrage adapté a été ciblée principalement en raison de sa popularité. Pour cette technique, nous avons proposé deux architectures différentes, une architecture matérielle personnalisée mise en œuvre sur FPGA et une architecture basée sur un ASIP. L'architecture matérielle personnalisée a été optimisée en termes de surface et de débit de traitement pour obtenir des performances supérieures par rapport aux implémentations existantes dans la littérature. Cette implémentation est plus efficace que toutes les implémentations existantes en termes de débit. Pour l'architecture basée sur un processeur à jeu d’instructions spécialisé (Application-Specific Instruction-set Processor – ASIP), nous avons identifié deux goulets d'étranglement liés à l'accès aux données et à la complexité des calculs de l'algorithme. Nous avons conçu des instructions spécifiques ajoutées au chemin de données du processeur. L'ASIP a été rendu 7.7 × plus rapide par rapport à son architecture de base. La deuxième technique pour la segmentation des vaisseaux sanguins est l'algorithme détecteur de ligne multi-échelle (Multi-Scale Ligne Detector – MSLD). L'algorithme MSLD est choisi en raison de ses performances et de son potentiel à détecter les petits vaisseaux sanguins. Cependant, l'algorithme fonctionne en multi-échelle, ce qui rend l’algorithme gourmand en mémoire. Pour résoudre ce problème et permettre l'accélération de son exécution, nous avons proposé un algorithme efficace en terme de mémoire, conçu et implémenté sur FPGA. L'architecture proposée a réduit de façon drastique les exigences de l’algorithme en terme de mémoire en réutilisant les calculs et la co-conception logicielle/matérielle. Les deux architectures matérielles proposées pour la segmentation du réseau vasculaire rétinien ont été rendues flexibles pour pouvoir traiter des images de basse et de haute résolution. Ceci a été réalisé par le développement d'un compilateur spécifique capable de générer une description HDL de bas niveau de l'algorithme à partir d'un ensemble de paramètres. Le compilateur nous a permis d’optimiser les performances et le temps de développement. Dans cette thèse, nous avons introduit deux architectures qui sont, au meilleur de nos connaissances, les seules capables de traiter des images à la fois de basse et de haute résolution.----------ABSTRACT Millions of people all around the world are affected by diabetes. Several ocular complications such as diabetic retinopathy are caused by diabetes, which can lead to irreversible vision loss or even blindness if not treated. Regular comprehensive eye exams by eye doctors are required to detect the diseases at earlier stages and permit their treatment. As a preventing solution, a screening protocol involving the use of digital fundus images was adopted. This allows eye doctors to monitor changes in the retina to detect any presence of eye disease. This solution made regular examinations widely available, even to populations in remote and underserved areas. With the resulting large amount of retinal images, automated techniques to process them are required. Automated eye detection techniques are largely addressed by the research community, and now they reached a high level of maturity, which allows the deployment of telemedicine solutions. In this thesis, we are addressing the problem of processing a high volume of retinal images in a reasonable time. This is mandatory to allow the practical use of the developed techniques in a clinical context. In this thesis, we focus on two steps of the retinal image pipeline. The first step is the retinal image quality assessment. The second step is the retinal blood vessel segmentation. The evaluation of the quality of the retinal images after acquisition is a primary task for the proper functioning of any automated retinal image processing system. The role of this step is to classify the acquired images according to their quality, which will allow an automated system to request a new acquisition in case of poor quality image. Several algorithms to evaluate the quality of retinal images were proposed in the literature. However, even if the acceleration of this task is required, especially to allow the creation of mobile systems for capturing retinal images, this task has not yet been addressed in the literature. In this thesis, we target an algorithm that computes image features to allow their classification to bad, medium or good quality. We identified the computation of image features as a repetitive task that necessitates acceleration. We were particularly interested in accelerating the Run-Length Matrix (RLM) algorithm. We proposed a first fully software implementation in the form of an embedded system based on Xilinx's Zynq technology. To accelerate the features computation, we designed a co-processor able to compute the features in parallel, implemented on the programmable logic of the Zynq FPGA. We achieved an acceleration of 30.1× over its software implementation for the features computation part of the RLM algorithm. Retinal blood vessel segmentation is a key task in the pipeline of retinal image processing. Blood vessels and their characteristics are good indicators of retina health. In addition, their segmentation can also help to segment the red lesions, indicators of diabetic retinopathy. Several techniques have been proposed in the literature to segment retinal blood vessels. Hardware architectures have also been proposed to accelerate blood vessel segmentation. The existing architectures lack in terms of performance and programming flexibility, especially for high resolution images. In this thesis, we targeted two techniques, matched filtering and line operators. The matched filtering technique was targeted mainly because of its popularity. For this technique, we proposed two different architectures, a custom hardware architecture implemented on FPGA, and an Application Specific Instruction-set Processor (ASIP) based architecture. The custom hardware architecture area and timing were optimized to achieve higher performances in comparison to existing implementations. Our custom hardware implementation outperforms all existing implementations in terms of throughput. For the ASIP based architecture, we identified two bottlenecks related to data access and computation intensity of the algorithm. We designed two specific instructions added to the processor datapath. The ASIP was made 7.7× more efficient in terms of execution time compared to its basic architecture. The second technique for blood vessel segmentation is the Multi-Scale Line Detector (MSLD) algorithm. The MSLD algorithm is selected because of its performance and its potential to detect small blood vessels. However, the algorithm works at multiple scales which makes it memory intensive. To solve this problem and allow the acceleration of its execution, we proposed a memory-efficient algorithm designed and implemented on FPGA. The proposed architecture reduces drastically the memory requirements of the algorithm by reusing the computations and SW/HW co-design. The two hardware architectures proposed for retinal blood vessel segmentation were made flexible to be able to process low and high resolution images. This was achieved by the development of a specific compiler able to generate low-level HDL descriptions of the algorithm from a set of the algorithm parameters. The compiler enabled us to optimize performance and development time. In this thesis, we introduce two novel architectures which are, to the best of our knowledge, the only ones able to process both low and high resolution images

    Rapid SoC Design: On Architectures, Methodologies and Frameworks

    Full text link
    Modern applications like machine learning, autonomous vehicles, and 5G networking require an order of magnitude boost in processing capability. For several decades, chip designers have relied on Moore’s Law - the doubling of transistor count every two years to deliver improved performance, higher energy efficiency, and an increase in transistor density. With the end of Dennard’s scaling and a slowdown in Moore’s Law, system architects have developed several techniques to deliver on the traditional performance and power improvements we have come to expect. More recently, chip designers have turned towards heterogeneous systems comprised of more specialized processing units to buttress the traditional processing units. These specialized units improve the overall performance, power, and area (PPA) metrics across a wide variety of workloads and applications. While the GPU serves as a classical example, accelerators for machine learning, approximate computing, graph processing, and database applications have become commonplace. This has led to an exponential growth in the variety (and count) of these compute units found in modern embedded and high-performance computing platforms. The various techniques adopted to combat the slowing of Moore’s Law directly translates to an increase in complexity for modern system-on-chips (SoCs). This increase in complexity in turn leads to an increase in design effort and validation time for hardware and the accompanying software stacks. This is further aggravated by fabrication challenges (photo-lithography, tooling, and yield) faced at advanced technology nodes (below 28nm). The inherent complexity in modern SoCs translates into increased costs and time-to-market delays. This holds true across the spectrum, from mobile/handheld processors to high-performance data-center appliances. This dissertation presents several techniques to address the challenges of rapidly birthing complex SoCs. The first part of this dissertation focuses on foundations and architectures that aid in rapid SoC design. It presents a variety of architectural techniques that were developed and leveraged to rapidly construct complex SoCs at advanced process nodes. The next part of the dissertation focuses on the gap between a completed design model (in RTL form) and its physical manifestation (a GDS file that will be sent to the foundry for fabrication). It presents methodologies and a workflow for rapidly walking a design through to completion at arbitrary technology nodes. It also presents progress on creating tools and a flow that is entirely dependent on open-source tools. The last part presents a framework that not only speeds up the integration of a hardware accelerator into an SoC ecosystem, but emphasizes software adoption and usability.PHDElectrical and Computer EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/168119/1/ajayi_1.pd
    corecore