321,615 research outputs found

    Principal Boundary on Riemannian Manifolds

    Full text link
    We consider the classification problem and focus on nonlinear methods for classification on manifolds. For multivariate datasets lying on an embedded nonlinear Riemannian manifold within the higher-dimensional ambient space, we aim to acquire a classification boundary for the classes with labels, using the intrinsic metric on the manifolds. Motivated by finding an optimal boundary between the two classes, we invent a novel approach -- the principal boundary. From the perspective of classification, the principal boundary is defined as an optimal curve that moves in between the principal flows traced out from two classes of data, and at any point on the boundary, it maximizes the margin between the two classes. We estimate the boundary in quality with its direction, supervised by the two principal flows. We show that the principal boundary yields the usual decision boundary found by the support vector machine in the sense that locally, the two boundaries coincide. Some optimality and convergence properties of the random principal boundary and its population counterpart are also shown. We illustrate how to find, use and interpret the principal boundary with an application in real data.Comment: 31 pages,10 figure

    Dynamic isoperimetry and the geometry of Lagrangian coherent structures

    Full text link
    The study of transport and mixing processes in dynamical systems is particularly important for the analysis of mathematical models of physical systems. We propose a novel, direct geometric method to identify subsets of phase space that remain strongly coherent over a finite time duration. This new method is based on a dynamic extension of classical (static) isoperimetric problems; the latter are concerned with identifying submanifolds with the smallest boundary size relative to their volume. The present work introduces \emph{dynamic} isoperimetric problems; the study of sets with small boundary size relative to volume \emph{as they are evolved by a general dynamical system}. We formulate and prove dynamic versions of the fundamental (static) isoperimetric (in)equalities; a dynamic Federer-Fleming theorem and a dynamic Cheeger inequality. We introduce a new dynamic Laplacian operator and describe a computational method to identify coherent sets based on eigenfunctions of the dynamic Laplacian. Our results include formal mathematical statements concerning geometric properties of finite-time coherent sets, whose boundaries can be regarded as Lagrangian coherent structures. The computational advantages of our new approach are a well-separated spectrum for the dynamic Laplacian, and flexibility in appropriate numerical approximation methods. Finally, we demonstrate that the dynamic Laplacian operator can be realised as a zero-diffusion limit of a newly advanced probabilistic transfer operator method (Froyland, 2013) for finding coherent sets, which is based on small diffusion. Thus, the present approach sits naturally alongside the probabilistic approach (Froyland, 2013), and adds a formal geometric interpretation

    Evolutionary Synthesis of HVAC System Configurations: Algorithm Development.

    Get PDF
    This paper describes the development of an optimization procedure for the synthesis of novel heating, ventilating, and air-conditioning (HVAC) system configurations. Novel HVAC system designs can be synthesized using model-based optimization methods. The optimization problem can be considered as having three sub-optimization problems; the choice of a component set; the design of the topological connections between the components; and the design of a system operating strategy. In an attempt to limit the computational effort required to obtain a design solution, the approach adopted in this research is to solve all three sub-problems simultaneously. Further, the computational effort has been limited by implementing simplified component models and including the system performance evaluation as part of the optimization problem (there being no need in this respect to simulation the system performance). The optimization problem has been solved using a Genetic Algorithm (GA), with data structures and search operators that are specifically developed for the solution of HVAC system optimization problems (in some instances, certain of the novel operators may also be used in other topological optimization problems. The performance of the algorithm, and various search operators has been examined for a two-zone optimization problem (the objective of the optimization being to find a system design that minimizes the system energy use). In particular, the performance of the algorithm in finding feasible system designs has been examined. It was concluded that the search was unreliable when the component set was optimized, but if the component set was fixed as a boundary condition on the search, then the algorithm had an 81% probability of finding a feasible system design. The optimality of the solutions is not examined in this paper, but is described in an associated publication. It was concluded that, given a candidate set of system components, the algorithm described here provides an effective tool for exploring the novel design of HVAC systems. (c) HVAC & R journa

    Understanding the role of objects in cross-disciplinary collaboration

    Get PDF
    In this paper we make a case for the use of multiple theoretical perspectives – theory on boundary objects, epistemic objects, cultural historical activity theory and objects as infrastructure - to understand the role of objects in cross-disciplinary collaboration. A pluralist approach highlights that objects perform at least three types of work in this context: they motivate collaboration; they allow participants to work across different types of boundaries; and they constitute the fundamental infrastructure of the activity. Building on the results of an empirical study we illustrate the insights that each theoretical lens affords into practices of collaboration and develop a novel analytical framework that organizes objects according to the active work they perform. Our framework can help shed new light on the phenomenon, especially with regards the shifting status of objects and sources of conflict (and change) in collaboration. After discussing these novel insights, we outline directions for future research stemming from a pluralist approach. We conclude by noting the managerial implications of our finding

    Creases and boundary conditions for subdivision curves

    Get PDF
    AbstractOur goal is to find subdivision rules at creases in arbitrary degree subdivision for piece-wise polynomial curves, but without introducing new control points e.g. by knot insertion. Crease rules are well understood for low degree (cubic and lower) curves. We compare three main approaches: knot insertion, ghost points, and modifying subdivision rules. While knot insertion and ghost points work for arbitrary degrees for B-splines, these methods introduce unnecessary (ghost) control points.The situation is not so simple in modifying subdivision rules. Based on subdivision and subspace selection matrices, a novel approach to finding boundary and sharp subdivision rules that generalises to any degree is presented. Our approach leads to new higher-degree polynomial subdivision schemes with crease control without introducing new control points

    Novel Approaches in Optimal Control and Their Application to Find Analytical Solutions for Minimum-Time Ascending Maneuver

    Get PDF
    Of utmost importance to development of UAVs, is an automatic flight system. Minimum-time maneuvers however, are most challenging due to the fact that dynamic and kinematic constraints should not be violated while conservative assumptions on actuator limits, compromise optimality. A major hindrance in minimum time to climb is that the kinematic constraint introduces a redundant state which makes the Hamiltonian quite difficult to handle while numerical methods are distrustful for that the resulting system of two-point boundary value problem is unbounded. To overcome these, a novel approach to a class of problems will be suggested. It is proved herein how this method allows the cost functional to be changed so that the number of state variables is reduced. These results facilitate the finding of the analytical optimal solution to reaching a waypoint with any initial but no final boundary conditions on the angle of trajectory. For when the final angle of the trajectory is specified, a method will be proposed. The solutions found here can be used by an RHPC method

    Enriched and Isogeometric Boundary Element Methods for Acoustic Wave Scattering

    Get PDF
    This thesis concerns numerical acoustic wave scattering analysis. Such problems have been solved with computational procedures for decades, with the boundary element method being established as a popular choice of approach. However, such problems become more computationally expensive as the wavelength of an incident wave decreases; this is because capturing the oscillatory nature of the incident wave and its scattered field requires increasing numbers of nodal variables. Authors from mathematical and engineering backgrounds have attempted to overcome this problem using a wide variety of procedures. One such approach, and the approach which is further developed in this thesis, is to include the fundamental character of wave propagation in the element formulation. This concept, known as the Partition of Unity Boundary Element Method (PU-BEM), has been shown to significantly reduce the computational burden of wave scattering problems. This thesis furthers this work by considering the different interpolation functions that are used in boundary elements. Initially, shape functions based on trigonomet- ric functions are developed to increase continuity between elements. Following that, non-uniform rational B-splines, ubiquitous in Computer Aided Design (CAD) soft- ware, are used in developing an isogeometric approach to wave scattering analysis of medium-wave problems. The enriched isogeometric approach is named the eXtended Isogeometric Boundary Element Method (XIBEM). In addition to the work above, a novel algorithm for finding a uniform placement of points on a unit sphere is presented. The algorithm allows an arbitrary number of points to be chosen; it also allows a fixed point or a bias towards a fixed point to be used. This algorithm is used for the three-dimensional acoustic analyses in this thesis. The new techniques developed within this thesis significantly reduce the number of degrees of freedom required to solve a problem to a certain accuracy—this reduc- tion is more than 70% in some cases. This reduces the number of equations that have to be solved and reduces the amount of integration required to evaluate these equations
    corecore