122 research outputs found

    Sound Event Localization, Detection, and Tracking by Deep Neural Networks

    Get PDF
    In this thesis, we present novel sound representations and classification methods for the task of sound event localization, detection, and tracking (SELDT). The human auditory system has evolved to localize multiple sound events, recognize and further track their motion individually in an acoustic environment. This ability of humans makes them context-aware and enables them to interact with their surroundings naturally. Developing similar methods for machines will provide an automatic description of social and human activities around them and enable machines to be context-aware similar to humans. Such methods can be employed to assist the hearing impaired to visualize sounds, for robot navigation, and to monitor biodiversity, the home, and cities. A real-life acoustic scene is complex in nature, with multiple sound events that are temporally and spatially overlapping, including stationary and moving events with varying angular velocities. Additionally, each individual sound event class, for example, a car horn can have a lot of variabilities, i.e., different cars have different horns, and within the same model of the car, the duration and the temporal structure of the horn sound is driver dependent. Performing SELDT in such overlapping and dynamic sound scenes while being robust is challenging for machines. Hence we propose to investigate the SELDT task in this thesis and use a data-driven approach using deep neural networks (DNNs). The sound event detection (SED) task requires the detection of onset and offset time for individual sound events and their corresponding labels. In this regard, we propose to use spatial and perceptual features extracted from multichannel audio for SED using two different DNNs, recurrent neural networks (RNNs) and convolutional recurrent neural networks (CRNNs). We show that using multichannel audio features improves the SED performance for overlapping sound events in comparison to traditional single-channel audio features. The proposed novel features and methods produced state-of-the-art performance for the real-life SED task and won the IEEE AASP DCASE challenge consecutively in 2016 and 2017. Sound event localization is the task of spatially locating the position of individual sound events. Traditionally, this has been approached using parametric methods. In this thesis, we propose a CRNN for detecting the azimuth and elevation angles of multiple temporally overlapping sound events. This is the first DNN-based method performing localization in complete azimuth and elevation space. In comparison to parametric methods which require the information of the number of active sources, the proposed method learns this information directly from the input data and estimates their respective spatial locations. Further, the proposed CRNN is shown to be more robust than parametric methods in reverberant scenarios. Finally, the detection and localization tasks are performed jointly using a CRNN. This method additionally tracks the spatial location with time, thus producing the SELDT results. This is the first DNN-based SELDT method and is shown to perform equally with stand-alone baselines for SED, localization, and tracking. The proposed SELDT method is evaluated on nine datasets that represent anechoic and reverberant sound scenes, stationary and moving sources with varying velocities, a different number of overlapping sound events and different microphone array formats. The results show that the SELDT method can track multiple overlapping sound events that are both spatially stationary and moving

    Spatial dissection of a soundfield using spherical harmonic decomposition

    Get PDF
    A real-world soundfield is often contributed by multiple desired and undesired sound sources. The performance of many acoustic systems such as automatic speech recognition, audio surveillance, and teleconference relies on its ability to extract the desired sound components in such a mixed environment. The existing solutions to the above problem are constrained by various fundamental limitations and require to enforce different priors depending on the acoustic condition such as reverberation and spatial distribution of sound sources. With the growing emphasis and integration of audio applications in diverse technologies such as smart home and virtual reality appliances, it is imperative to advance the source separation technology in order to overcome the limitations of the traditional approaches. To that end, we exploit the harmonic decomposition model to dissect a mixed soundfield into its underlying desired and undesired components based on source and signal characteristics. By analysing the spatial projection of a soundfield, we achieve multiple outcomes such as (i) soundfield separation with respect to distinct source regions, (ii) source separation in a mixed soundfield using modal coherence model, and (iii) direction of arrival (DOA) estimation of multiple overlapping sound sources through pattern recognition of the modal coherence of a soundfield. We first employ an array of higher order microphones for soundfield separation in order to reduce hardware requirement and implementation complexity. Subsequently, we develop novel mathematical models for modal coherence of noisy and reverberant soundfields that facilitate convenient ways for estimating DOA and power spectral densities leading to robust source separation algorithms. The modal domain approach to the soundfield/source separation allows us to circumvent several practical limitations of the existing techniques and enhance the performance and robustness of the system. The proposed methods are presented with several practical applications and performance evaluations using simulated and real-life dataset

    Deep Learning Methods for Remote Sensing

    Get PDF
    Remote sensing is a field where important physical characteristics of an area are exacted using emitted radiation generally captured by satellite cameras, sensors onboard aerial vehicles, etc. Captured data help researchers develop solutions to sense and detect various characteristics such as forest fires, flooding, changes in urban areas, crop diseases, soil moisture, etc. The recent impressive progress in artificial intelligence (AI) and deep learning has sparked innovations in technologies, algorithms, and approaches and led to results that were unachievable until recently in multiple areas, among them remote sensing. This book consists of sixteen peer-reviewed papers covering new advances in the use of AI for remote sensing

    Sensor Signal and Information Processing II

    Get PDF
    In the current age of information explosion, newly invented technological sensors and software are now tightly integrated with our everyday lives. Many sensor processing algorithms have incorporated some forms of computational intelligence as part of their core framework in problem solving. These algorithms have the capacity to generalize and discover knowledge for themselves and learn new information whenever unseen data are captured. The primary aim of sensor processing is to develop techniques to interpret, understand, and act on information contained in the data. The interest of this book is in developing intelligent signal processing in order to pave the way for smart sensors. This involves mathematical advancement of nonlinear signal processing theory and its applications that extend far beyond traditional techniques. It bridges the boundary between theory and application, developing novel theoretically inspired methodologies targeting both longstanding and emergent signal processing applications. The topic ranges from phishing detection to integration of terrestrial laser scanning, and from fault diagnosis to bio-inspiring filtering. The book will appeal to established practitioners, along with researchers and students in the emerging field of smart sensors processing

    A Geometric Deep Learning Approach to Sound Source Localization and Tracking

    Get PDF
    La localización y el tracking de fuentes sonoras mediante agrupaciones de micrófonos es un problema que, pese a llevar décadas siendo estudiado, permanece abierto. En los últimos años, modelos basados en deep learning han superado el estado del arte que había sido establecido por las técnicas clásicas de procesado de señal, pero estos modelos todavía presentan problemas para trabajar en espacios con alta reverberación o para realizar el tracking de varias fuentes sonoras, especialmente cuando no es posible aplicar ningún criterio para clasificarlas u ordenarlas. En esta tesis, se proponen nuevos modelos que, basados en las ideas del Geometric Deep Learning, suponen un avance en el estado del arte para las situaciones mencionadas previamente.Los modelos propuestos utilizan como entrada mapas de potencia acústica calculados con el algoritmo SRP-PHAT, una técnica clásica de procesado de señal que permite estimar la energía acústica recibida desde cualquier dirección del espacio. Además, también proponemos una nueva técnica para suprimir analíticamente el efecto de una fuente en las funciones de correlación cruzada usadas para calcular los mapas SRP-PHAT. Basándonos en técnicas de banda estrecha, se demuestra que es posible proyectar las funciones de correlación cruzada de las señales capturadas por una agrupación de micrófonos a un espacio ortogonal a una dirección dada simplemente usando una combinación lineal de las funciones originales con retardos temporales. La técnica propuesta puede usarse para diseñar sistemas iterativos de localización de múltiples fuentes que, tras localizar la fuente con mayor energía en las funciones de correlación cruzada o en los mapas SRP-PHAT, la cancelen para poder encontrar otras fuentes que estuvieran enmascaradas por ella.Antes de poder entrenar modelos de deep learning necesitamos datos. Esto, en el caso de seguir un esquema de aprendizaje supervisado, supone un dataset de grabaciones de audio multicanal con la posición de las fuentes etiquetada con precisión. Pese a que existen algunos datasets con estas características, estos no son lo suficientemente extensos para entrenar una red neuronal y los entornos acústicos que incluyen no son suficientemente variados. Para solventar el problema de la falta de datos, presentamos una técnica para simular escenas acústicas con una o varias fuentes en movimiento y, para realizar estas simulaciones conforme son necesarias durante el entrenamiento de la red, presentamos la que es, que sepamos, la primera librería de software libre para la simulación de acústica de salas con aceleración por GPU. Tal y como queda demostrado en esta tesis, esta librería es más de dos órdenes de magnitud más rápida que otras librerías del estado del arte.La idea principal del Geometric Deep Learning es que los modelos deberían compartir las simetrías (i.e. las invarianzas y equivarianzas) de los datos y el problema que se quiere resolver. Para la estimación de la dirección de llegada de una única fuente, el uso de mapas SRP-PHAT como entrada de nuestros modelos hace que la equivarianza a las rotaciones sea obvia y, tras presentar una primera aproximación usando redes convolucionales tridimensionales, presentamos un modelo basado en convoluciones icosaédricas que son capaces de aproximar la equivarianza al grupo continuo de rotaciones esféricas por la equivarianza al grupo discreto de las 60 simetrías del icosaedro. En la tesis se demuestra que los mapas SRP-PHAT son una característica de entrada mucho más robusta que los espectrogramas que se usan típicamente en muchos modelos del estado del arte y que el uso de las convoluciones icosaédricas, combinado con una nueva función softargmax que obtiene una salida de regresión a partir del resultado de una red convolucional interpretándolo como una distribución de probabilidad y calculando su valor esperado, permite reducir enormemente el número de parámetros entrenables de los modelos sin reducir la precisión de sus estimaciones.Cuando queremos realizar el tracking de varias fuentes en movimiento y no podemos aplicar ningún criterio para ordenarlas o clasificarlas, el problema se vuelve invariante a las permutaciones de las estimaciones, por lo que no podemos compararlas directamente con las etiquetas de referencia dado que no podemos esperar que sigan el mismo orden. Este tipo de modelos se han entrenado típicamente usando estrategias de entrenamiento invariantes a las permutaciones, pero estas normalmente no penalizan los cambios de identidad por lo que los modelos entrenados con ellas no mantienen la identidad de cada fuente de forma consistente. Para resolver este problema, en esta tesis proponemos una nueva estrategia de entrenamiento, a la que llamamos sliding permutation invariant training (sPIT), que es capaz de optimizar todas las características que podemos esperar de un sistema de tracking de múltiples fuentes: la precisión de sus estimaciones de dirección de llegada, la exactitud de sus detecciones y la consistencia de las identidades asignadas a cada fuente.Finalmente, proponemos un nuevo tipo de red recursiva que usa conjuntos de vectores en lugar de vectores para representar su entrada y su estado y que es invariante a las permutaciones de los elementos del conjunto de entrada y equivariante a las del conjunto de estado. En esta tesis se muestra como este es el comportamiento que deberíamos esperar de un sistema de tracking que toma como entradas las estimaciones de un modelo de localización multifuente y se compara el rendimiento de estas redes recursivas invariantes a las permutaciones con redes recursivas GRU convencionales para aplicaciones de tracking de fuentes sonoras.The localization and tracking of sound sources using microphone arrays is a problem that, even if it has attracted attention from the signal processing research community for decades, remains open. In recent years, deep learning models have surpassed the state-of-the-art that had been established by classic signal processing techniques, but these models still struggle with handling rooms with strong reverberations or tracking multiple sources that dynamically appear and disappear, especially when we cannot apply any criteria to classify or order them. In this thesis, we follow the ideas of the Geometric Deep Learning framework to propose new models and techniques that mean an advance of the state-of-the-art in the aforementioned scenarios. As the input of our models, we use acoustic power maps computed using the SRP-PHAT algorithm, a classic signal processing technique that allows us to estimate the acoustic energy received from any direction of the space and, therefore, compute arbitrary-shaped power maps. In addition, we also propose a new technique to analytically cancel a source from the generalized cross-correlations used to compute the SRP-PHAT maps. Based on previous narrowband cancellation techniques, we prove that we can project the cross-correlation functions of the signals captured by a microphone array into a space orthogonal to a given direction by just computing a linear combination of time-shifted versions of the original cross-correlations. The proposed cancellation technique can be used to design iterative multi-source localization systems where, after having found the strongest source in the generalized cross-correlation functions or in the SRP-PHAT maps, we can cancel it and find new sources that were previously masked by thefirst source. Before being able to train deep learning models we need data, which, in the case of following a supervised learning approach, means a dataset of multichannel recordings with the position of the sources accurately labeled. Although there exist some datasets like this, they are not large enough to train a neural network and the acoustic environments they include are not diverse enough. To overcome this lack of real data, we present a technique to simulate acoustic scenes with one or several moving sound sources and, to be able to perform these simulations as they are needed during the training, we present what is, to the best of our knowledge, the first free and open source room acoustics simulation library with GPU acceleration. As we prove in this thesis, the presented library is more than two orders of magnitude faster than other state-of-the-art CPU libraries. The main idea of the Geometric Deep Learning philosophy is that the models should fit the symmetries (i.e. the invariances and equivariances) of the data and the problem we want to solve. For single-source direction of arrival estimation, the use of SRP-PHAT maps as inputs of our models makes the rotational equivariance of the problem undeniably clear and, after a first approach using 3D convolutional neural networks, we present a model using icosahedral convolutions that approximate the equivariance to the continuous group of spherical rotations by the discrete group of the 60 icosahedral symmetries. We prove that the SRP-PHAT maps are a much more robust input feature than the spectrograms typically used in many state-of-the-art models and that the use of the icosahedral convolutions, combined with a new soft-argmax function that obtains a regression output from the output of the convolutional neural network by interpreting it as a probability distribution and computing its expected value, allows us to dramatically reduce the number of trainable parameters of the models without losing accuracy in their estimations. When we want to track multiple moving sources and we cannot use any criteria to order or classify them, the problem becomes invariant to the permutations of the estimates, so we cannot directly compare them with the ground truth labels since we cannot expect them to be in the same order. This kind of models has typically been trained using permutation invariant training strategies, but these strategies usually do not penalize the identity switches and the models trained with them do not keep the identity of every source consistent during the tracking. To solve this issue, we propose a new training strategy, which we call sliding permutation invariant training, that is able to optimize all the features that we could expect from a multi-source tracking system: the precision of the direction of arrival estimates, the accuracy of the source detections, and the consistency of the assigned identities. Finally, we propose a new kind of recursive neural network that, instead of using vectors as their input and their state, uses sets of vectors and is invariant to the permutation of the elements of the input set and equivariant to the permutations of the elements of the state set. We show how this is the behavior that we should expect from a tracking model which takes as inputs the estimates of a multi-source localization model and compare these permutation-invariant recursive neural networks with the conventional gated recurrent units for sound source tracking applications.<br /

    Edge Artificial Intelligence for Real-Time Target Monitoring

    Get PDF
    The key enabling technology for the exponentially growing cellular communications sector is location-based services. The need for location-aware services has increased along with the number of wireless and mobile devices. Estimation problems, and particularly parameter estimation, have drawn a lot of interest because of its relevance and engineers' ongoing need for higher performance. As applications expanded, a lot of interest was generated in the accurate assessment of temporal and spatial properties. In the thesis, two different approaches to subject monitoring are thoroughly addressed. For military applications, medical tracking, industrial workers, and providing location-based services to the mobile user community, which is always growing, this kind of activity is crucial. In-depth consideration is given to the viability of applying the Angle of Arrival (AoA) and Receiver Signal Strength Indication (RSSI) localization algorithms in real-world situations. We presented two prospective systems, discussed them, and presented specific assessments and tests. These systems were put to the test in diverse contexts (e.g., indoor, outdoor, in water...). The findings showed the localization capability, but because of the low-cost antenna we employed, this method is only practical up to a distance of roughly 150 meters. Consequently, depending on the use-case, this method may or may not be advantageous. An estimation algorithm that enhances the performance of the AoA technique was implemented on an edge device. Another approach was also considered. Radar sensors have shown to be durable in inclement weather and bad lighting conditions. Frequency Modulated Continuous Wave (FMCW) radars are the most frequently employed among the several sorts of radar technologies for these kinds of applications. Actually, this is because they are low-cost and can simultaneously provide range and Doppler data. In comparison to pulse and Ultra Wide Band (UWB) radar sensors, they also need a lower sample rate and a lower peak to average ratio. The system employs a cutting-edge surveillance method based on widely available FMCW radar technology. The data processing approach is built on an ad hoc-chain of different blocks that transforms data, extract features, and make a classification decision before cancelling clutters and leakage using a frame subtraction technique, applying DL algorithms to Range-Doppler (RD) maps, and adding a peak to cluster assignment step before tracking targets. In conclusion, the FMCW radar and DL technique for the RD maps performed well together for indoor use-cases. The aforementioned tests used an edge device and Infineon Technologies' Position2Go FMCW radar tool-set

    Acoustic Echo Estimation using the model-based approach with Application to Spatial Map Construction in Robotics

    Get PDF
    • …
    corecore