76 research outputs found

    NOVEL SINGLE LAYER FAULT TOLERANCE RCA CONSTRUCTION FOR QCA TECHNOLOGY

    Get PDF
    Quantum-dot Cellular Automata (QCA) technology has become a promising and accessible candidate that can be used for digital circuits implementation at Nanoscale, but the circuit design in the QCA technology has been limited due to fabrication high-defect rate. So, this issue is an interesting research topic in the QCA circuits design. In this study, a novel 3-input Fault Tolerance (FT) Majority Gate (MG) is developed. Accordingly, an efficient 1-bit QCA full adder is developed using the developed 3-input MG. Then, a new 4-bit FT QCA Ripple Carry Adder (RCA) is developed based on the proposed 1-bit FT QCA FA. The developed circuits are implemented in the QCADesigner tool version 2.0.3. The results indicate that the developed QCA circuits provide advantages compared to other QCA circuits in terms of double and single cell missing defect, area and delay time

    On The Design Of Low-Complexity High-Speed Arithmetic Circuits In Quantum-Dot Cellular Automata Nanotechnology

    Get PDF
    For the last four decades, the implementation of very large-scale integrated systems has largely based on complementary metal-oxide semiconductor (CMOS) technology. However, this technology has reached its physical limitations. Emerging nanoscale technologies such as quantum-dot cellular automata (QCA), single electron tunneling (SET), and tunneling phase logic (TPL) are major candidate for possible replacements of CMOS. These nanotechnologies use majority and/or minority logic and inverters as circuit primitives. In this dissertation, a comprehensive methodology for majority/minority logic networks synthesis is developed. This method is capable of processing any arbitrary multi-output Boolean function to nd its equivalent optimal majority logic network targeting to optimize either the number of gates or levels. The proposed method results in different primary equivalent majority expression networks. However, the most optimized network will be generated as a nal solution. The obtained results for 15 MCNC benchmark circuits show that when the number of majority gates is the rst optimization priority, there is an average reduction of 45.3% in the number of gates and 15.1% in the number of levels. They also show that when the rst priority is the number of levels, an average reduction of 23.5% in the number of levels and 43.1% in the number of gates is possible, compared to the majority AND/OR mapping method. These results are better compared to those obtained from the best existing methods. In this dissertation, our approach is to exploit QCA technology because of its capability to implement high-density, very high-speed switching and tremendously lowpower integrated systems and is more amenable to digital circuits design. In particular, we have developed algorithms for the QCA designs of various single- and multi-operation arithmetic arrays. Even though, majority/minority logic are the basic units in promising nanotechnologies, an XOR function can be constructed in QCA as a single device. The basic cells of the proposed arrays are developed based on the fundamental logic devices in QCA and a single-layer structure of the three-input XOR function. This process leads to QCA arithmetic circuits with better results in view of dierent aspects such as cell count, area, and latency, compared to their best counterparts. The proposed arrays can be formed in a pipeline manner to perform the arithmetic operations for any number of bits which could be quite valuable while considering the future design of large-scale QCA circuits

    Design of 4-Bit 4-Tap FIR Filter Based on Quantum-Dot Cellular Automata (QCA) Technology with a Realistic Clocking Scheme

    Get PDF
    The increasing demand for efficient signal processors necessitates the design of digital finite duration impulse response FIR filter which occupies less area and consumes less power. FIR filters have simple, regular and scalable structures. This paper represents designing and implementation of a low-power 4-tap FIR filter based on quantum-dot cellular automata (QCA) by using a realistic clocking scheme. The QCADesigner software, as widely used in QCA circuit design and verification, has been used to implement and to verify all of the designs in this study. Power dissipation result has been computed for the proposed circuit using accurate QCADesigner-E software. The proposed QCA FIR achieves about 97.74% reduction in power compared to previous existing designs. The outcome of this work can clearly open up a new window of opportunity for low-power signal processing system

    A Novel Reconfiguration Scheme in Quantum-Dot Cellular Automata for Energy Efficient Nanocomputing

    Get PDF
    Quantum-Dot Cellular Automata (QCA) is currently being investigated as an alternative to CMOS technology. There has been extensive study on a wide range of circuits from simple logical circuits such as adders to complex circuits such as 4-bit processors. At the same time, little if any work has been done in considering the possibility of reconfiguration to reduce power in QCA devices. This work presents one of the first such efforts when considering reconfigurable QCA architectures which are expected to be both robust and power efficient. We present a new reconfiguration scheme which is highly robust and is expected to dissipate less power with respect to conventional designs. An adder design based on the reconfiguration scheme will be presented in this thesis, with a detailed power analysis and comparison with existing designs. In order to overcome the problems of routing which comes with reconfigurability, a new wire crossing mechanism is also presented as part of this thesis

    The use of reversible logic gates in the design of residue number systems

    Get PDF
    Reversible computing is an emerging technique to achieve ultra-low-power circuits. Reversible arithmetic circuits allow for achieving energy-efficient high-performance computational systems. Residue number systems (RNS) provide parallel and fault-tolerant additions and multiplications without carry propagation between residue digits. The parallelism and fault-tolerance features of RNS can be leveraged to achieve high-performance reversible computing. This paper proposed RNS full reversible circuits, including forward converters, modular adders and multipliers, and reverse converters used for a class of RNS moduli sets with the composite form {2k, 2p-1}. Modulo 2n-1, 2n, and 2n+1 adders and multipliers were designed using reversible gates. Besides, reversible forward and reverse converters for the 3-moduli set {2n-1, 2n+k, 2n+1} have been designed. The proposed RNS-based reversible computing approach has been applied for consecutive multiplications with an improvement of above 15% in quantum cost after the twelfth iteration, and above 27% in quantum depth after the ninth iteration. The findings show that the use of the proposed RNS-based reversible computing in convolution results in a significant improvement in quantum depth in comparison to conventional methods based on weighted binary adders and multipliers
    • …
    corecore