6,938 research outputs found

    Guest Editorial

    Full text link

    Framework for Security Transparency in Cloud Computing

    Get PDF
    The migration of sensitive data and applications from the on-premise data centre to a cloud environment increases cyber risks to users, mainly because the cloud environment is managed and maintained by a third-party. In particular, the partial surrender of sensitive data and application to a cloud environment creates numerous concerns that are related to a lack of security transparency. Security transparency involves the disclosure of information by cloud service providers about the security measures being put in place to protect assets and meet the expectations of customers. It establishes trust in service relationship between cloud service providers and customers, and without evidence of continuous transparency, trust and confidence are affected and are likely to hinder extensive usage of cloud services. Also, insufficient security transparency is considered as an added level of risk and increases the difficulty of demonstrating conformance to customer requirements and ensuring that the cloud service providers adequately implement security obligations. The research community have acknowledged the pressing need to address security transparency concerns, and although technical aspects for ensuring security and privacy have been researched widely, the focus on security transparency is still scarce. The relatively few literature mostly approach the issue of security transparency from cloud providers’ perspective, while other works have contributed feasible techniques for comparison and selection of cloud service providers using metrics such as transparency and trustworthiness. However, there is still a shortage of research that focuses on improving security transparency from cloud users’ point of view. In particular, there is still a gap in the literature that (i) dissects security transparency from the lens of conceptual knowledge up to implementation from organizational and technical perspectives and; (ii) support continuous transparency by enabling the vetting and probing of cloud service providers’ conformity to specific customer requirements. The significant growth in moving business to the cloud – due to its scalability and perceived effectiveness – underlines the dire need for research in this area. This thesis presents a framework that comprises the core conceptual elements that constitute security transparency in cloud computing. It contributes to the knowledge domain of security transparency in cloud computing by proposing the following. Firstly, the research analyses the basics of cloud security transparency by exploring the notion and foundational concepts that constitute security transparency. Secondly, it proposes a framework which integrates various concepts from requirement engineering domain and an accompanying process that could be followed to implement the framework. The framework and its process provide an essential set of conceptual ideas, activities and steps that can be followed at an organizational level to attain security transparency, which are based on the principles of industry standards and best practices. Thirdly, for ensuring continuous transparency, the thesis proposes an essential tool that supports the collection and assessment of evidence from cloud providers, including the establishment of remedial actions for redressing deficiencies in cloud provider practices. The tool serves as a supplementary component of the proposed framework that enables continuous inspection of how predefined customer requirements are being satisfied. The thesis also validates the proposed security transparency framework and tool in terms of validity, applicability, adaptability, and acceptability using two different case studies. Feedbacks are collected from stakeholders and analysed using essential criteria such as ease of use, relevance, usability, etc. The result of the analysis illustrates the validity and acceptability of both the framework and tool in enhancing security transparency in a real-world environment

    Proactive cloud service assurance framework for fault remediation in cloud environment

    Get PDF
    Cloud resiliency is an important issue in successful implementation of cloud computing systems. Handling cloud faults proactively, with a suitable remediation technique having minimum cost is an important requirement for a fault management system. The selection of best applicable remediation technique is a decision making problem and considers parameters such as i) Impact of remediation technique ii) Overhead of remediation technique ii) Severity of fault and iv) Priority of the application. This manuscript proposes an analytical model to measure the effectiveness of a remediation technique for various categories of faults, further it demonstrates the implementation of an efficient fault remediation system using a rule-based expert system. The expert system is designed to compute an utility value for each remediation technique in a novel way and select the best remediation technique from its knowledgebase. A prototype is developed for experimentation purpose and the results shows improved availability with less overhead as compared to a reactive fault management system

    Computer-aided automated detection of kidney disease using supervised learning technique

    Get PDF
    In this paper, we propose an efficient home-based system for monitoring chronic kidney disease (CKD). As non-invasive disease identification approaches are gaining popularity nowadays, the proposed system is designed to detect kidney disease from saliva samples. Salivary diagnosis has advanced its popularity over the last few years due to the non-invasive sample collection technique. The use of salivary components to monitor and detect kidney disease is investigated through an experimental investigation. We measured the amount of urea in the saliva sample to detect CKD. Further, this article explains the use of predictive analysis using machine learning techniques and data analytics in remote healthcare management. The proposed health monitoring system classified the samples with an accuracy of 97.1%. With internet facilities available everywhere, this methodology can offer better healthcare services, with real-time decision support in remote monitoring platform

    Scenarios for the development of smart grids in the UK: literature review

    Get PDF
    Smart grids are expected to play a central role in any transition to a low-carbon energy future, and much research is currently underway on practically every area of smart grids. However, it is evident that even basic aspects such as theoretical and operational definitions, are yet to be agreed upon and be clearly defined. Some aspects (efficient management of supply, including intermittent supply, two-way communication between the producer and user of electricity, use of IT technology to respond to and manage demand, and ensuring safe and secure electricity distribution) are more commonly accepted than others (such as smart meters) in defining what comprises a smart grid. It is clear that smart grid developments enjoy political and financial support both at UK and EU levels, and from the majority of related industries. The reasons for this vary and include the hope that smart grids will facilitate the achievement of carbon reduction targets, create new employment opportunities, and reduce costs relevant to energy generation (fewer power stations) and distribution (fewer losses and better stability). However, smart grid development depends on additional factors, beyond the energy industry. These relate to issues of public acceptability of relevant technologies and associated risks (e.g. data safety, privacy, cyber security), pricing, competition, and regulation; implying the involvement of a wide range of players such as the industry, regulators and consumers. The above constitute a complex set of variables and actors, and interactions between them. In order to best explore ways of possible deployment of smart grids, the use of scenarios is most adequate, as they can incorporate several parameters and variables into a coherent storyline. Scenarios have been previously used in the context of smart grids, but have traditionally focused on factors such as economic growth or policy evolution. Important additional socio-technical aspects of smart grids emerge from the literature review in this report and therefore need to be incorporated in our scenarios. These can be grouped into four (interlinked) main categories: supply side aspects, demand side aspects, policy and regulation, and technical aspects.

    A Risk management framework for the BYOD environment

    Get PDF
    Computer networks in organisations today have different layers of connections, which are either domain connections or external connections. The hybrid network contains the standard domain connections, cloud base connections, “bring your own device” (BYOD) connections, together with the devices and network connections of the Internet of Things (IoT). All these technologies will need to be incorporated in the Oman Vision 2040 strategy, which will involve changing several cities to smart cities. To implement this strategy artificial intelligence, cloud computing, BYOD and IoT will be adopted. This research will focus on the adoption of BYOD in the Oman context. It will have advantages for organisations, such as increasing productivity and reducing costs. However, these benefits come with security risks and privacy concerns, the users being the main contributors of these risks. The aim of this research is to develop a risk management and security framework for the BYOD environment to minimise these risks. The proposed framework is designed to detect and predict the risks by the use of MDM event logs and function logs. The chosen methodology is a combination of both qualitative and quantitative approaches, known as a mixed-methods approach. The approach adopted in this research will identify the latest threats and risks experienced in BYOD environments. This research also investigates the level of user-awareness of BYOD security methods. The proposed framework will enhance the current techniques for risk management by improving risk detection and prediction of threats, as well as, enabling BYOD risk management systems to generate notifications and recommendations of possible preventive/mitigation actions to deal with them

    A Review on Cybersecurity based on Machine Learning and Deep Learning Algorithms

    Get PDF
    Machin learning (ML) and Deep Learning (DL) technique have been widely applied to areas like image processing and speech recognition so far. Likewise, ML and DL plays a critical role in detecting and preventing in the field of cybersecurity. In this review, we focus on recent ML and DL algorithms that have been proposed in cybersecurity, network intrusion detection, malware detection. We also discuss key elements of cybersecurity, main principle of information security and the most common methods used to threaten cybersecurity. Finally, concluding remarks are discussed including the possible research topics that can be taken into consideration to enhance various cyber security applications using DL and ML algorithms

    An ensemble based approach for effective intrusion detection using majority voting

    Get PDF
    Of late, Network Security Research is taking center stage given the vulnerability of computing ecosystem with networking systems increasingly falling to hackers. On the network security canvas, Intrusion detection system (IDS) is an essential tool used for timely detection of cyber-attacks. A designated set of reliable safety has been put in place to check any severe damage to the network and the user base. Machine learning (ML) is being frequently used to detect intrusion owing to their understanding of intrusion detection systems in minimizing security threats. However, several single classifiers have their limitation and pose challenges to the development of effective IDS. In this backdrop, an ensemble approach has been proposed in current work to tackle the issues of single classifiers and accordingly, a highly scalable and constructive majority voting-based ensemble model was proposed which can be employed in real-time for successfully scrutinizing the network traffic to proactively warn about the possibility of attacks. By taking into consideration the properties of existing machine learning algorithms, an effective model was developed and accordingly, an accuracy of 99%, 97.2%, 97.2%, and 93.2% were obtained for DoS, Probe, R2L, and U2R attacks and thus, the proposed model is effective for identifying intrusion
    • …
    corecore