209 research outputs found

    INQUIRIES IN INTELLIGENT INFORMATION SYSTEMS: NEW TRAJECTORIES AND PARADIGMS

    Get PDF
    Rapid Digital transformation drives organizations to continually revitalize their business models so organizations can excel in such aggressive global competition. Intelligent Information Systems (IIS) have enabled organizations to achieve many strategic and market leverages. Despite the increasing intelligence competencies offered by IIS, they are still limited in many cognitive functions. Elevating the cognitive competencies offered by IIS would impact the organizational strategic positions. With the advent of Deep Learning (DL), IoT, and Edge Computing, IISs has witnessed a leap in their intelligence competencies. DL has been applied to many business areas and many industries such as real estate and manufacturing. Moreover, despite the complexity of DL models, many research dedicated efforts to apply DL to limited computational devices, such as IoTs. Applying deep learning for IoTs will turn everyday devices into intelligent interactive assistants. IISs suffer from many challenges that affect their service quality, process quality, and information quality. These challenges affected, in turn, user acceptance in terms of satisfaction, use, and trust. Moreover, Information Systems (IS) has conducted very little research on IIS development and the foreseeable contribution for the new paradigms to address IIS challenges. Therefore, this research aims to investigate how the employment of new AI paradigms would enhance the overall quality and consequently user acceptance of IIS. This research employs different AI paradigms to develop two different IIS. The first system uses deep learning, edge computing, and IoT to develop scene-aware ridesharing mentoring. The first developed system enhances the efficiency, privacy, and responsiveness of current ridesharing monitoring solutions. The second system aims to enhance the real estate searching process by formulating the search problem as a Multi-criteria decision. The system also allows users to filter properties based on their degree of damage, where a deep learning network allocates damages in 12 each real estate image. The system enhances real-estate website service quality by enhancing flexibility, relevancy, and efficiency. The research contributes to the Information Systems research by developing two Design Science artifacts. Both artifacts are adding to the IS knowledge base in terms of integrating different components, measurements, and techniques coherently and logically to effectively address important issues in IIS. The research also adds to the IS environment by addressing important business requirements that current methodologies and paradigms are not fulfilled. The research also highlights that most IIS overlook important design guidelines due to the lack of relevant evaluation metrics for different business problems

    Geo-Social Group Queries with Minimum Acquaintance Constraint

    Full text link
    The prosperity of location-based social networking services enables geo-social group queries for group-based activity planning and marketing. This paper proposes a new family of geo-social group queries with minimum acquaintance constraint (GSGQs), which are more appealing than existing geo-social group queries in terms of producing a cohesive group that guarantees the worst-case acquaintance level. GSGQs, also specified with various spatial constraints, are more complex than conventional spatial queries; particularly, those with a strict kkNN spatial constraint are proved to be NP-hard. For efficient processing of general GSGQ queries on large location-based social networks, we devise two social-aware index structures, namely SaR-tree and SaR*-tree. The latter features a novel clustering technique that considers both spatial and social factors. Based on SaR-tree and SaR*-tree, efficient algorithms are developed to process various GSGQs. Extensive experiments on real-world Gowalla and Dianping datasets show that our proposed methods substantially outperform the baseline algorithms based on R-tree.Comment: This is the preprint version that is accepted by the Very Large Data Bases Journa

    BALANCING PRIVACY, PRECISION AND PERFORMANCE IN DISTRIBUTED SYSTEMS

    Get PDF
    Privacy, Precision, and Performance (3Ps) are three fundamental design objectives in distributed systems. However, these properties tend to compete with one another and are not considered absolute properties or functions. They must be defined and justified in terms of a system, its resources, stakeholder concerns, and the security threat model. To date, distributed systems research has only considered the trade-offs of balancing privacy, precision, and performance in a pairwise fashion. However, this dissertation formally explores the space of trade-offs among all 3Ps by examining three representative classes of distributed systems, namely Wireless Sensor Networks (WSNs), cloud systems, and Data Stream Management Systems (DSMSs). These representative systems support large part of the modern and mission-critical distributed systems. WSNs are real-time systems characterized by unreliable network interconnections and highly constrained computational and power resources. The dissertation proposes a privacy-preserving in-network aggregation protocol for WSNs demonstrating that the 3Ps could be navigated by adopting the appropriate algorithms and cryptographic techniques that are not prohibitively expensive. Next, the dissertation highlights the privacy and precision issues that arise in cloud databases due to the eventual consistency models of the cloud. To address these issues, consistency enforcement techniques across cloud servers are proposed and the trade-offs between 3Ps are discussed to help guide cloud database users on how to balance these properties. Lastly, the 3Ps properties are examined in DSMSs which are characterized by high volumes of unbounded input data streams and strict real-time processing constraints. Within this system, the 3Ps are balanced through a proposed simple and efficient technique that applies access control policies over shared operator networks to achieve privacy and precision without sacrificing the systems performance. Despite that in this dissertation, it was shown that, with the right set of protocols and algorithms, the desirable 3P properties can co-exist in a balanced way in well-established distributed systems, this dissertation is promoting the use of the new 3Ps-by-design concept. This concept is meant to encourage distributed systems designers to proactively consider the interplay among the 3Ps from the initial stages of the systems design lifecycle rather than identifying them as add-on properties to systems

    Software Protection and Secure Authentication for Autonomous Vehicular Cloud Computing

    Get PDF
    Artificial Intelligence (AI) is changing every technology we deal with. Autonomy has been a sought-after goal in vehicles, and now more than ever we are very close to that goal. Vehicles before were dumb mechanical devices, now they are becoming smart, computerized, and connected coined as Autonomous Vehicles (AVs). Moreover, researchers found a way to make more use of these enormous capabilities and introduced Autonomous Vehicles Cloud Computing (AVCC). In these platforms, vehicles can lend their unused resources and sensory data to join AVCC. In this dissertation, we investigate security and privacy issues in AVCC. As background, we built our vision of a layer-based approach to thoroughly study state-of-the-art literature in the realm of AVs. Particularly, we examined some cyber-attacks and compared their promising mitigation strategies from our perspective. Then, we focused on two security issues involving AVCC: software protection and authentication. For the first problem, our concern is protecting client’s programs executed on remote AVCC resources. Such a usage scenario is susceptible to information leakage and reverse-engineering. Hence, we proposed compiler-based obfuscation techniques. What distinguishes our techniques, is that they are generic and software-based and utilize the intermediate representation, hence, they are platform agnostic, hardware independent and support different high level programming languages. Our results demonstrate that the control-flow of obfuscated code versions are more complicated making it unintelligible for timing side-channels. For the second problem, we focus on protecting AVCC from unauthorized access or intrusions, which may cause misuse or service disruptions. Therefore, we propose a strong privacy-aware authentication technique for users accessing AVCC services or vehicle sharing their resources with the AVCC. Our technique modifies robust function encryption, which protects stakeholder’s confidentiality and withstands linkability and “known-ciphertexts” attacks. Thus, we utilize an authentication server to search and match encrypted data by performing dot product operations. Additionally, we developed another lightweight technique, based on KNN algorithm, to authenticate vehicles at computationally limited charging stations using its owner’s encrypted iris data. Our security and privacy analysis proved that our schemes achieved privacy-preservation goals. Our experimental results showed that our schemes have reasonable computation and communications overheads and efficiently scalable

    Community-Based Behavioral Understanding of Mobility Trends and Public Attitude through Transportation User and Agency Interactions on Social Media in the Emergence of Covid-19

    Get PDF
    The increased availability of technology-enabled transportation options and modern communication devices (smartphones, in particular) is transforming travel-related decision-making in the population differently at different places, points in time, modes of transportation, and socio-economic groups. The emergence of COVID-19 made the dynamics of passenger travel behavior more complex, forcing a worldwide, unparalleled change in human travel behavior and introducing a new normal into their existence. This dissertation explores the potential of social media platforms (SMPs) as a viable alternative to traditional approaches (e.g., travel surveys) to understand the complex dynamics of people’s mobility patterns in the emergence of COVID-19. In this dissertation, we focus on three objectives. First, a novel approach to developing comparative infographics of emerging transportation trends is introduced by natural language processing and data-driven techniques using large-scale social media data. Second, a methodology has been developed to model community-based travel behavior under different socioeconomic and demographic factors at the community level in the emergence of COVID-19 on Twitter, inferring users’ demographics to overcome sampling bias. Third, the communication patterns of different transportation agencies on Twitter regarding message kinds, communication sufficiency, consistency, and coordination were examined by applying text mining techniques and dynamic network analysis. The methodologies and findings of the dissertation will allow real-time monitoring of transportation trends by agencies, researchers, and professionals. Potential applications of the work may include: (1) identifying spatial diversity of public mobility needs and concerns through social media platforms; (2) developing new policies that would satisfy the diverse needs at different locations; (3) introducing new plans to support and celebrate equity, diversity, and inclusion in the transportation sector that would improve the efficient flow of goods and services; (4) designing new methods to model community-based travel behavior at different scales (e.g., census block, zip code, etc.) using social media data inferring users’ socio-economic and demographic properties; and (5) implementing efficient policies to improve existing communication plans, critical information dissemination efficacy, and coordination of different transportation actors to raise awareness among passengers in general and during unprecedented health crises in the fragmented communication world

    A two-stage approach to ridesharing assignment and auction in a crowdsourcing collaborative transportation platform.

    Get PDF
    Collaborative transportation platforms have emerged as an innovative way for firms and individuals to meet their transportation needs through using services from external profit-seeking drivers. A number of collaborative transportation platforms (such as Uber, Lyft, and MyDHL) arise to facilitate such delivery requests in recent years. A particular collaborative transportation platform usually provides a two sided marketplace with one set of members (service seekers or passengers) posting tasks, and the another set of members (service providers or drivers) accepting on these tasks and providing services. As the collaborative transportation platform attracts more service seekers and providers, the number of open requests at any given time can be large. On the other hand, service providers or drivers often evaluate the first couple of pending requests in deciding which request to participate in. This kind of behavior made by the driver may have potential detrimental implications for all parties involved. First, the drivers typically end up participating in those requests that require longer driving distance for higher profit. Second, the passengers tend to overpay under a competition free environment compared to the situation where the drivers are competing with each other. Lastly, when the drivers and passengers are not satisfied with their outcomes, they may leave the platforms. Therefore the platform could lose revenues in the short term and market share in the long term. In order to address these concerns, a decision-making support procedure is needed to: (i) provide recommendations for drivers to identify the most preferable requests, (ii) offer reasonable rates to passengers without hurting driver’s profit. This dissertation proposes a mathematical modeling approach to address two aspects of the crowdsourcing ridesharing platform. One is of interest to the centralized platform management on the assignment of requests to drivers; and this is done through a multi-criterion many to many assignment optimization. The other is of interest to the decentralized individual drivers on making optimal bid for multiple assigned requests; and this is done through the use of prospect theory. To further validate our proposed collaborative transportation framework, we analyze the taxi yellow cab data collected from New York city in 2017 in both demand and supply perspective. We attempt to examine and understand the collected data to predict Uber-like ridesharing trip demands and driver supplies in order to use these information to the subsequent multi-criterion driver-to-passenger assignment model and driver\u27s prospect maximization model. Particularly regression and time series techniques are used to develop the forecasting models so that centralized module in the platform can predict the ridesharing demands and supply within certain census tracts at a given hour. There are several future research directions along the research stream in this dissertation. First, one could investigate to extend the models to the emerging concept of Physical Internet on commodity and goods transportation under the interconnected crowdsourcing platform. In other words, integrate crowdsourcing in prevalent supply chain logistics and transportation. Second, it\u27s interesting to study the effect of Uber-like crowdsourcing transportation platforms on existing traffic flows at the various levels (e.g., urban and regional)

    Accessible Autonomy: Exploring Inclusive Autonomous Vehicle Design and Interaction for People who are Blind and Visually Impaired

    Get PDF
    Autonomous vehicles are poised to revolutionize independent travel for millions of people experiencing transportation-limiting visual impairments worldwide. However, the current trajectory of automotive technology is rife with roadblocks to accessible interaction and inclusion for this demographic. Inaccessible (visually dependent) interfaces and lack of information access throughout the trip are surmountable, yet nevertheless critical barriers to this potentially lifechanging technology. To address these challenges, the programmatic dissertation research presented here includes ten studies, three published papers, and three submitted papers in high impact outlets that together address accessibility across the complete trip of transportation. The first paper began with a thorough review of the fully autonomous vehicle (FAV) and blind and visually impaired (BVI) literature, as well as the underlying policy landscape. Results guided prejourney ridesharing needs among BVI users, which were addressed in paper two via a survey with (n=90) transit service drivers, interviews with (n=12) BVI users, and prototype design evaluations with (n=6) users, all contributing to the Autonomous Vehicle Assistant: an award-winning and accessible ridesharing app. A subsequent study with (n=12) users, presented in paper three, focused on prejourney mapping to provide critical information access in future FAVs. Accessible in-vehicle interactions were explored in the fourth paper through a survey with (n=187) BVI users. Results prioritized nonvisual information about the trip and indicated the importance of situational awareness. This effort informed the design and evaluation of an ultrasonic haptic HMI intended to promote situational awareness with (n=14) participants (paper five), leading to a novel gestural-audio interface with (n=23) users (paper six). Strong support from users across these studies suggested positive outcomes in pursuit of actionable situational awareness and control. Cumulative results from this dissertation research program represent, to our knowledge, the single most comprehensive approach to FAV BVI accessibility to date. By considering both pre-journey and in-vehicle accessibility, results pave the way for autonomous driving experiences that enable meaningful interaction for BVI users across the complete trip of transportation. This new mode of accessible travel is predicted to transform independent travel for millions of people with visual impairment, leading to increased independence, mobility, and quality of life

    Fast Many-to-Many Routing for Dynamic Taxi Sharing with Meeting Points

    Full text link
    We introduce an improved algorithm for the dynamic taxi sharing problem, i.e. a dispatcher that schedules a fleet of shared taxis as it is used by services like UberXShare and Lyft Shared. We speed up the basic online algorithm that looks for all possible insertions of a new customer into a set of existing routes, we generalize the objective function, and we efficiently support a large number of possible pick-up and drop-off locations. This lays an algorithmic foundation for taxi sharing systems with higher vehicle occupancy - enabling greatly reduced cost and ecological impact at comparable service quality. We find that our algorithm computes assignments between vehicles and riders several times faster than a previous state-of-the-art approach. Further, we observe that allowing meeting points for vehicles and riders can reduce the operating cost of vehicle fleets by up to 15% while also reducing rider wait and trip times.Comment: 26 pages, 7 figures, 4 tables. To be presented at ALENEX'24. arXiv admin note: substantial text overlap with arXiv:2305.0541
    • 

    corecore