11 research outputs found

    1-D broadside-radiating leaky-wave antenna based on a numerically synthesized impedance surface

    Get PDF
    A newly-developed deterministic numerical technique for the automated design of metasurface antennas is applied here for the first time to the design of a 1-D printed Leaky-Wave Antenna (LWA) for broadside radiation. The surface impedance synthesis process does not require any a priori knowledge on the impedance pattern, and starts from a mask constraint on the desired far-field and practical bounds on the unit cell impedance values. The designed reactance surface for broadside radiation exhibits a non conventional patterning; this highlights the merit of using an automated design process for a design well known to be challenging for analytical methods. The antenna is physically implemented with an array of metal strips with varying gap widths and simulation results show very good agreement with the predicted performance

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    Reconfigurable pixel antennas for communications

    Get PDF
    The explosive growth of wireless communications has brought new requirements in terms of compactness, mobility and multi-functionality that pushes antenna research. In this context, recon gurable antennas have gained a lot of attention due to their ability to adjust dynamically their frequency and radiation properties, providing multiple functionalities and being able to adapt themselves to a changing environment. A pixel antenna is a particular type of recon gurable antenna composed of a grid of metallic patches interconnected by RF-switches which can dynamically reshape its active surface. This capability provides pixel antennas with a recon guration level much higher than in other recon gurable architectures. Despite the outstanding recon guration capabilities of pixel antennas, there are important practical issues related to the performance-complexity balance that must be addressed before they can be implemented in commercial systems. This doctoral work focuses on the minimization of the pixel antenna complexity while maximizing its recon guration capabilities, contributing to the development of pixel antennas from a conceptual structure towards a practical recon gurable antenna architecture. First, the conceptualization of novel pixel geometries is addressed. It is shown that antenna complexity can be signi cantly reduced by using multiple-sized pixels. This multi-size technique allows to design pixel antennas with a number of switches one order of magnitude lower than in common pixel structures, while preserving high multiparameter recon gurability. A new conceptual architecture where the pixel surface acts as a parasitic layer is also proposed. The parasitic nature of the pixel layer leads to important advantages regarding the switch biasing and integration possibilities. Secondly, new pixel recon guration technologies are explored. After investigating the capabilities of semiconductors and RF-MEMS switches, micro uidic technology is proposed as a new technology to create and remove liquid metal pixels rather than interconnecting them. Thirdly, the full multi-parameter recon guration capabilities of pixel antennas is explored, which contrasts with the partial explorations available in the literature. The maximum achievable recon guration ranges (frequency range, beam-steering angular range and polarization modes) as well as the linkage between the di erent parameter under recon guration are studied. Finally, the performance of recon gurable antennas in beam-steering applications is analyzed. Figures-of-merit are derived to quantify radiation pattern recon gurability, enabling the evaluation of the performance of recon gurable antennas, pixel antennas and recon guration algorithms

    Polarimetric Radar for Automotive Applications

    Get PDF
    Current automotive radar sensors prove to be a weather robust and low-cost solution, but are suffering from low resolution and are not capable of classifying detected targets. However, for future applications like autonomous driving, such features are becoming ever increasingly important. On the basis of successful state-of-the-art applications, this work presents the first in-depth analysis and ground-breaking, novel results of polarimetric millimeter wave radars for automotive applications

    Reconfigurable pixel antennas for communications

    Get PDF
    Premi extraordinari doctorat curs 2012-2013, àmbit Enginyeria de les TICThe explosive growth of wireless communications has brought new requirements in terms of compactness, mobility and multi-functionality that pushes antenna research. In this context, recon gurable antennas have gained a lot of attention due to their ability to adjust dynamically their frequency and radiation properties, providing multiple functionalities and being able to adapt themselves to a changing environment. A pixel antenna is a particular type of recon gurable antenna composed of a grid of metallic patches interconnected by RF-switches which can dynamically reshape its active surface. This capability provides pixel antennas with a recon guration level much higher than in other recon gurable architectures. Despite the outstanding recon guration capabilities of pixel antennas, there are important practical issues related to the performance-complexity balance that must be addressed before they can be implemented in commercial systems. This doctoral work focuses on the minimization of the pixel antenna complexity while maximizing its recon guration capabilities, contributing to the development of pixel antennas from a conceptual structure towards a practical recon gurable antenna architecture. First, the conceptualization of novel pixel geometries is addressed. It is shown that antenna complexity can be signi cantly reduced by using multiple-sized pixels. This multi-size technique allows to design pixel antennas with a number of switches one order of magnitude lower than in common pixel structures, while preserving high multiparameter recon gurability. A new conceptual architecture where the pixel surface acts as a parasitic layer is also proposed. The parasitic nature of the pixel layer leads to important advantages regarding the switch biasing and integration possibilities. Secondly, new pixel recon guration technologies are explored. After investigating the capabilities of semiconductors and RF-MEMS switches, micro uidic technology is proposed as a new technology to create and remove liquid metal pixels rather than interconnecting them. Thirdly, the full multi-parameter recon guration capabilities of pixel antennas is explored, which contrasts with the partial explorations available in the literature. The maximum achievable recon guration ranges (frequency range, beam-steering angular range and polarization modes) as well as the linkage between the di erent parameter under recon guration are studied. Finally, the performance of recon gurable antennas in beam-steering applications is analyzed. Figures-of-merit are derived to quantify radiation pattern recon gurability, enabling the evaluation of the performance of recon gurable antennas, pixel antennas and recon guration algorithms.Award-winningPostprint (published version

    Dense Small Cell Networks for Next Generation Wireless Systems

    Get PDF

    Wireless Links for Telecare and Telemedicine Applications using Compact Body-Worn Antennas.

    Get PDF
    PhDThis thesis concerns the design of body-centric wireless communications for short-range indoor Telecare/Telemedicine applications. Such communications are starting to be used to convey key, relatively low data-rate body-sensor data wirelessly between on-body sensor node(s) located on potentially mobile clients/patients and fixed off-body Access Point(s). From the outset, key practical considerations/constraints were assumed; in particular that, wherever possible, existing components (including antennas) and established protocols would be employed. This approach should enable existing manufacturers of mobile wireless components to rapidly adapt to the potential Telecare/Telemedicine market segment with minimum R&D capital outlay. In addition, maximum user convenience of the on-body nodes has been taken into account to ensure that they are readily accepted and hence actually used. As anticipated, using existing mobile antennas (designed for nominally free space use) in close proximity to the human body poses several limitations. These are quantified here for a particular candidate commercial device. In the process, however, a novel unanticipated effect of the nearby body was also discovered; namely that the body completely depolarises the (otherwise reasonably polarised) antenna patterns. A potential physical explanation for this effect is identified and evaluated by means of analysis based on a modified Geometric Optics approach. The result of this analysis agrees with those simulated and measured here to remarkable accuracy. The thesis then presents several multi-antenna schemes to overcome these severe limitations and identifies that best suited to the indoor Telecare/Telecommunication application here. Simulations at the Physical Layer are reported with this optimum Wireless Links for Telecare and Telemedicine using Compact Body-Worn Antennas 8 single-input multiple-output (SIMO) antenna scheme for a typical indoor scenario. These quantify the overall system performance when such measures are adopted, demonstrating that it is adequate in this role. Finally, promising techniques are suggested for Future Work which could afford further significant system improvements for future upgrades of the solution presented here. In particular, the use of metamaterial techniques are indicated which could substantially reduce on-body transmit powers currently required. This would give highly desirable increases in battery lifetimes for the mobile battery powered on-body nodes.Engineering and Physical Science Research Council (EPSRC

    The Design of Novel Pattern Reconfigurable Antennas for Mobile Networks

    Get PDF
    This research evaluates a beam reconfigurable basestation transceiver for cellular applications from both a systems and antenna design perspective. The novelty in this research is the investigation of an automatic azimuth beamwidth switching antenna, which can effectively respond to homogeneous traffic distribution in a cellular mobile network. The proposed technique which this antenna uses is azimuth beam switching which incorporates PIN diodes to provide a reconfigurable reflecting ground plane for a three sector antenna. Numerical systems analysis has been carried out on a hexagonal homogeneous cellular network to evaluate how this reconfigurable antenna can balance mean and cell edge capacity through azimuth beamwidth reconfiguration. The optimum azimuth beamwidth is identified as 60°, which achieves the best cell capacity, and by reconfiguring the azimuth beamwidth from 60° to 110°, the maximized capacity at the edges of the cell can be improved. The influence of mechanical tilt, inter site distance, path loss model and vicinity of the cell edge for this antenna are described. This research shows that a mean cell edge improvement from 15Mbit/s to 18Mbit/s is achievable when beamwidth reconfiguration is used, and that this improvement is consistent for cell sizes from 500m to 1500m. Results from a test of an as-manufactured reconfigurable antenna are presented here, and show similar results compared to simulations. To overcome network coverage deterioration at large antenna downtilt angles in a homogeneous cellular mobile network, different beam shaping techniques in the elevation plane, including antenna sidelobe suppressing and null filling, are discussed here. By filling up the first upper-side null for a 12-element antenna array, both the average cell edge and cell capacity can be improved. The application of this beam shaping pattern for a 12-element array is described here, for the purpose of optimising a specific cell within a mobile network which is shown below average coverage and/or capacity. By choosing a proper antenna downtilt angle for this specific cell, whilst keeping the optimum tilt angle for other cells in the network, the cell’s coverage/capacity can be increased without impacting too much on the performance of other surrounding cells. Lastly, the effects of number of antenna elements for a 60° azimuth beamwidth antenna array on the network coverage/capacity are discussed here. This research shows that, as a result of an increasing number of antenna elements in an elevation direction, network capacity can be increased along with the optimum tilt angle. This suggests that a high gain antenna array in a cellular mobile network can be potential for large site deployment and fewer installations

    Non-Radiative Calibration of Active Antenna Arrays

    Get PDF
    Antenna arrays offer significant benefits for modern wireless communication systems but they remain difficult and expensive to produce. One of the impediments of utilising them is to maintain knowledge of the precise amplitude and phase relationships between the elements of the array, which are sensitive to errors particularly when each element of the array is connected to its own transceiver. These errors arise from multiple sources such as manufacturing errors, mutual coupling between the elements, thermal effects, component aging and element location errors. The calibration problem of antenna arrays is primarily the identification of the amplitude and phase mismatch, and then using this information for correction. This thesis will present a novel measurement-based calibration approach, which uses a fixed structure allowing each element of the array to be measured. The measurement structure is based around multiple sensors, which are interleaved with the elements of the array to provide a scalable structure that provides multiple measurement paths to almost all of the elements of the array. This structure is utilised by comparison based calibration algorithms, so that each element of the array can be calibrated while mitigating the impact of the additional measurement hardware on the calibration accuracy. The calibration was proven in the investigation of the experimental test-bed, which represented a typical telecommunications basestation. Calibration accuracies of ±0.5dB and 5o were achieved for all but one amplitude outlier of 0.55dB. The performance is only limited by the quality of the coupler design. This calibration approach has also been demonstrated for wideband signal calibration

    Backscatter Communication: Design and Optimisation For Emerging Use-Cases

    Get PDF
    Backscatter communication (BackCom) holds significant potential to improve the pervasiveness and energy efficiency of future wireless networks, through its passive modulation and reuse of existing radiofrequency signals. In order to function as a key technology under the Internet of Things paradigm, issues relating to BackCom, such as its limited coverage and deployment flexibility, low data rates, and the difficulty of channel estimation, need to be addressed. To complement this, a wider range of use-cases and deployment scenarios also need to be established. This thesis focuses on addressing these issues inherent to BackCom, by exploring a series of system setups which push the boundaries in terms of coverage and flexible deployment, and then future-proofs BackCom through the study of the assistance from another emerging technology, the intelligent reflecting surface (IRS). The first half of the thesis focuses on the coverage and deployment flexibility of BackCom devices under conventional wireless communication settings. First, we study a novel use-case in which BackCom devices replace conventional, actively transmitting relays to assist an information transmission from a source to a destination. We introduce the decode-and-forward (DF) BackCom relaying scheme and perform a detailed bit error rate (BER) characterisation of the DF BackCom scheme alongside the amplify-and-forward (AF) BackCom 'reflection' scheme. The feasibility and practical range of the BackCom relay is demonstrated through a case study, and our findings indicate that with careful selection of relay parameters, the DF scheme can improve the functionality of BackCom relays through the decoding operation, while resulting in minimal BER differences compared to the AF 'reflection' scheme. Second, we study the coverage maximisation of bistatic BackCom systems in wide-area environmental monitoring applications through judicious power beacon (PB) placement. We propose a straightforward metric to characterise coverage, the guaranteed coverage distance (GCD), to overcome the complex shape of each PB's coverage area when the performance of the BackCom link is dependent on the strength of the energy transfer link. We find that a single-tier symmetric deployment of PBs performs favourably under a practical number (24 or less) of PBs, with a GCD of more than 100m being readily achievable. The second half of the thesis studies the incorporation of the IRS into BackCom systems, with the aim of improving BackCom performance. The IRS-assisted bistatic BackCom system is studied first, where we solve a transmit power minimisation problem at the carrier emitter involving the joint optimisation of the transmit and receive beamforming, the IRS phase shifts and the BackCom splitting coefficients. We present a unique signal model arising from this system, where a signal originating from the carrier emitter may be reflected by the IRS twice before reaching the reader, and account for this added complexity in our algorithm design. Our results indicate that transmit power savings of over 6 dB may be achieved with a moderately-sized IRS, which may be converted to nearly 50m of range increase. Then, we study the use of the IRS in an ambient BackCom system, with the goal of reducing direct-link interference and improving detection performance. We assume the absence of all ambient signal and channel knowledge, which is a practical assumption given the passively reflecting nature of both BackCom devices and IRSs. We propose a deep reinforcement learning (DRL)-based algorithm which maximises the backscatter channel difference (that is, the ratio of the energies of the direct-link interference and overall received signal) based on instantaneous signal samples, which may be converted to BER reductions. We find that the DRL approach with no channel knowledge can achieve a backscatter channel difference within 25% of that obtained using benchmarks with full channel knowledge
    corecore