172 research outputs found

    Deep Neural Architectures for End-to-End Relation Extraction

    Get PDF
    The rapid pace of scientific and technological advancements has led to a meteoric growth in knowledge, as evidenced by a sharp increase in the number of scholarly publications in recent years. PubMed, for example, archives more than 30 million biomedical articles across various domains and covers a wide range of topics including medicine, pharmacy, biology, and healthcare. Social media and digital journalism have similarly experienced their own accelerated growth in the age of big data. Hence, there is a compelling need for ways to organize and distill the vast, fragmented body of information (often unstructured in the form of natural human language) so that it can be assimilated, reasoned about, and ultimately harnessed. Relation extraction is an important natural language task toward that end. In relation extraction, semantic relationships are extracted from natural human language in the form of (subject, object, predicate) triples such that subject and object are mentions of discrete concepts and predicate indicates the type of relation between them. The difficulty of relation extraction becomes clear when we consider the myriad of ways the same relation can be expressed in natural language. Much of the current works in relation extraction assume that entities are known at extraction time, thus treating entity recognition as an entirely separate and independent task. However, recent studies have shown that entity recognition and relation extraction, when modeled together as interdependent tasks, can lead to overall improvements in extraction accuracy. When modeled in such a manner, the task is referred to as end-to-end relation extraction. In this work, we present four studies that introduce incrementally sophisticated architectures designed to tackle the task of end-to-end relation extraction. In the first study, we present a pipeline approach for extracting protein-protein interactions as affected by particular mutations. The pipeline system makes use of recurrent neural networks for protein detection, lexicons for gene normalization, and convolutional neural networks for relation extraction. In the second study, we show that a multi-task learning framework, with parameter sharing, can achieve state-of-the-art results for drug-drug interaction extraction. At its core, the model uses graph convolutions, with a novel attention-gating mechanism, over dependency parse trees. In the third study, we present a more efficient and general-purpose end-to-end neural architecture designed around the idea of the table-filling paradigm; for an input sentence of length n, all entities and relations are extracted in a single pass of the network in an indirect fashion by populating the cells of a corresponding n by n table using metric-based features. We show that this approach excels in both the general English and biomedical domains with extraction times that are up to an order of magnitude faster compared to the prior best. In the fourth and last study, we present an architecture for relation extraction that, in addition to being end-to-end, is able to handle cross-sentence and N-ary relations. Overall, our work contributes to the advancement of modern information extraction by exploring end-to-end solutions that are fast, accurate, and generalizable to many high-value domains

    Representation Learning for Natural Language Processing

    Get PDF
    This open access book provides an overview of the recent advances in representation learning theory, algorithms and applications for natural language processing (NLP). It is divided into three parts. Part I presents the representation learning techniques for multiple language entries, including words, phrases, sentences and documents. Part II then introduces the representation techniques for those objects that are closely related to NLP, including entity-based world knowledge, sememe-based linguistic knowledge, networks, and cross-modal entries. Lastly, Part III provides open resource tools for representation learning techniques, and discusses the remaining challenges and future research directions. The theories and algorithms of representation learning presented can also benefit other related domains such as machine learning, social network analysis, semantic Web, information retrieval, data mining and computational biology. This book is intended for advanced undergraduate and graduate students, post-doctoral fellows, researchers, lecturers, and industrial engineers, as well as anyone interested in representation learning and natural language processing

    Deep neural networks for identification of sentential relations

    Get PDF
    Natural language processing (NLP) is one of the most important technologies in the information age. Understanding complex language utterances is also a crucial part of artificial intelligence. Applications of NLP are everywhere because people communicate mostly in language: web search, advertisement, emails, customer service, language translation, etc. There are a large variety of underlying tasks and machine learning models powering NLP applications. Recently, deep learning approaches have obtained exciting performance across a broad array of NLP tasks. These models can often be trained in an end-to-end paradigm without traditional, task-specific feature engineering. This dissertation focuses on a specific NLP task --- sentential relation identification. Successfully identifying the relations of two sentences can contribute greatly to some downstream NLP problems. For example, in open-domain question answering, if the system can recognize that a new question is a paraphrase of a previously observed question, the known answers can be returned directly, avoiding redundant reasoning. For another, it is also helpful to discover some latent knowledge, such as inferring ``the weather is good today'' from another description ``it is sunny today''. This dissertation presents some deep neural networks (DNNs) which are developed to handle this sentential relation identification problem. More specifically, this problem is addressed by this dissertation in the following three aspects. (i) Sentential relation representation is built on the matching between phrases of arbitrary lengths. Stacked Convolutional Neural Networks (CNNs) are employed to model the sentences, so that each filter can cover a local phrase, and filters in lower level span shorter phrases and filters in higher level span longer phrases. CNNs in stack enable to model sentence phrases in different granularity and different abstraction. (ii) Phrase matches contribute differently to the tasks. This motivates us to propose an attention mechanism in CNNs for these tasks, differing from the popular research of attention mechanisms in Recurrent Neural Networks (RNNs). Attention mechanisms are implemented in both convolution layer as well as pooling layer in deep CNNs, in order to figure out automatically which phrase of one sentence matches a specific phrase of the other sentence. These matches are supposed to be indicative to the final decision. Another contribution in terms of attention mechanism is inspired by the observation that some sentential relation identification task, like answer selection for multi-choice question answering, is mainly determined by phrase alignments of stronger degree; in contrast, some tasks such as textual entailment benefit more from the phrase alignments of weaker degree. This motivates us to propose a dynamic ``attentive pooling'' to select phrase alignments of different intensities for different task categories. (iii) In certain scenarios, sentential relation can only be successfully identified within specific background knowledge, such as the multi-choice question answering based on passage comprehension. In this case, the relation between two sentences (question and answer candidate) depends on not only the semantics in the two sentences, but also the information encoded in the given passage. Overall, the work in this dissertation models sentential relations in hierarchical DNNs, different attentions and different background knowledge. All systems got state-of-the-art performances in representative tasks.Die Verarbeitung natürlicher Sprachen (engl.: natural language processing - NLP) ist eine der wichtigsten Technologien des Informationszeitalters. Weiterhin ist das Verstehen komplexer sprachlicher Ausdrücke ein essentieller Teil künstlicher Intelligenz. Anwendungen von NLP sind überall zu finden, da Menschen haupt\-säch\-lich über Sprache kommunizieren: Internetsuchen, Werbung, E-Mails, Kundenservice, Übersetzungen, etc. Es gibt eine große Anzahl Tasks und Modelle des maschinellen Lernens für NLP-Anwendungen. In den letzten Jahren haben Deep-Learning-Ansätze vielversprechende Ergebnisse für eine große Anzahl verschiedener NLP-Tasks erzielt. Diese Modelle können oft end-to-end trainiert werden, kommen also ohne auf den Task zugeschnittene Feature aus. Diese Dissertation hat einen speziellen NLP-Task als Fokus: Sententielle Relationsidentifizierung. Die Beziehung zwischen zwei Sätzen erfolgreich zu erkennen, kann die Performanz für nachfolgende NLP-Probleme stark verbessern. Für open-domain question answering, zum Beispiel, kann ein System, das erkennt, dass eine neue Frage eine Paraphrase einer bereits gesehenen Frage ist, die be\-kann\-te Antwort direkt zurückgeben und damit mehrfaches Schlussfolgern vermeiden. Zudem ist es auch hilfreich, zu Grunde liegendes Wissen zu entdecken, so wie das Schließen der Tatsache "das Wetter ist gut" aus der Beschreibung "es ist heute sonnig". Diese Dissertation stellt einige tiefe neuronale Netze (eng.: deep neural networks - DNNs) vor, die speziell für das Problem der sententiellen Re\-la\-tions\-i\-den\-ti\-fi\-zie\-rung entwickelt wurden. Im Speziellen wird dieses Problem in dieser Dissertation unter den folgenden drei Aspekten behandelt: (i) Sententielle Relationsrepr\"{a}sentationen basieren auf einem Matching zwischen Phrasen beliebiger Länge. Tiefe convolutional neural networks (CNNs) werden verwendet, um diese Sätze zu modellieren, sodass jeder Filter eine lokale Phrase abdecken kann, wobei Filter in niedrigeren Schichten kürzere und Filter in höheren Schichten längere Phrasen umfassen. Tiefe CNNs machen es möglich, Sätze in unterschiedlichen Granularitäten und Abstraktionsleveln zu modellieren. (ii) Matches zwischen Phrasen tragen unterschiedlich zu unterschiedlichen Tasks bei. Das motiviert uns, einen Attention-Mechanismus für CNNs für diese Tasks einzuführen, der sich von dem bekannten Attention-Mechanismus für recurrent neural networks (RNNs) unterscheidet. Wir implementieren Attention-Mechanismen sowohl im convolution layer als auch im pooling layer tiefer CNNs, um herauszufinden, welche Phrasen eines Satzes bestimmten Phrasen eines anderen Satzes entsprechen. Wir erwarten, dass solche Matches die finale Entscheidung stark beeinflussen. Ein anderer Beitrag zu Attention-Mechanismen wurde von der Beobachtung inspiriert, dass einige sententielle Relationsidentifizierungstasks, zum Beispiel die Auswahl einer Antwort für multi-choice question answering hauptsächlich von Phrasen\-a\-lignie\-rungen stärkeren Grades bestimmt werden. Im Gegensatz dazu profitieren andere Tasks wie textuelles Schließen mehr von Phrasenalignierungen schwächeren Grades. Das motiviert uns, ein dynamisches "attentive pooling" zu entwickeln, um Phrasenalignierungen verschiedener Stärken für verschiedene Taskkategorien auszuwählen. (iii) In bestimmten Szenarien können sententielle Relationen nur mit entsprechendem Hintergrundwissen erfolgreich identifiziert werden, so wie multi-choice question answering auf der Grundlage des Verständnisses eines Absatzes. In diesem Fall hängt die Relation zwischen zwei Sätzen (der Frage und der möglichen Antwort) nicht nur von der Semantik der beiden Sätze, sondern auch von der in dem gegebenen Absatz enthaltenen Information ab. Insgesamt modellieren die in dieser Dissertation enthaltenen Arbeiten sententielle Relationen in hierarchischen DNNs, mit verschiedenen Attention-Me\-cha\-nis\-men und wenn unterschiedliches Hintergrundwissen zur Verf\ {u}gung steht. Alle Systeme erzielen state-of-the-art Ergebnisse für die entsprechenden Tasks

    AN ANALYSIS OF BOTTOM-UP ATTENTION MODELS AND MULTIMODAL REPRESENTATION LEARNING FOR VISUAL QUESTION ANSWERING

    Get PDF
    A Visual Question Answering (VQA) task is the ability of a system to take an image and an open-ended, natural language question about the image and provide a natural language text answer as the output. The VQA task is a relatively nascent field, with only a few strategies explored. The performance of the VQA system, in terms of accuracy of answers to the image-question pairs, requires a considerable overhaul before the system can be used in practice. The general system for performing the VQA task consists of an image encoder network, a question encoder network, a multi-modal attention network that combines the information obtained image and question, and answering network that generates natural language answers for the image-question pair. In this thesis, we follow two strategies to improve the performance (accuracy) of VQA. The first is a representation learning approach (utilizing the state-of-the-art Generative Adversarial Models (GANs) (Goodfellow, et al., 2014)) to improve the image encoding system of VQA. This thesis evaluates four variants of GANs to identify a GAN architecture that best captures the data distribution of the images, and it was determined that GAN variants become unstable and fail to become a viable image encoding system in VQA. The second strategy is to evaluate an alternative approach to the attention network, using multi-modal compact bilinear pooling, in the existing VQA system. The second strategy led to an increase in the accuracy of VQA by 2% compared to the current state-of-the-art technique

    Semantic vector representations of senses, concepts and entities and their applications in natural language processing

    Get PDF
    Representation learning lies at the core of Artificial Intelligence (AI) and Natural Language Processing (NLP). Most recent research has focused on develop representations at the word level. In particular, the representation of words in a vector space has been viewed as one of the most important successes of lexical semantics and NLP in recent years. The generalization power and flexibility of these representations have enabled their integration into a wide variety of text-based applications, where they have proved extremely beneficial. However, these representations are hampered by an important limitation, as they are unable to model different meanings of the same word. In order to deal with this issue, in this thesis we analyze and develop flexible semantic representations of meanings, i.e. senses, concepts and entities. This finer distinction enables us to model semantic information at a deeper level, which in turn is essential for dealing with ambiguity. In addition, we view these (vector) representations as a connecting bridge between lexical resources and textual data, encoding knowledge from both sources. We argue that these sense-level representations, similarly to the importance of word embeddings, constitute a first step for seamlessly integrating explicit knowledge into NLP applications, while focusing on the deeper sense level. Its use does not only aim at solving the inherent lexical ambiguity of language, but also represents a first step to the integration of background knowledge into NLP applications. Multilinguality is another key feature of these representations, as we explore the construction language-independent and multilingual techniques that can be applied to arbitrary languages, and also across languages. We propose simple unsupervised and supervised frameworks which make use of these vector representations for word sense disambiguation, a key application in natural language understanding, and other downstream applications such as text categorization and sentiment analysis. Given the nature of the vectors, we also investigate their effectiveness for improving and enriching knowledge bases, by reducing the sense granularity of their sense inventories and extending them with domain labels, hypernyms and collocations

    Natural Language Processing: Emerging Neural Approaches and Applications

    Get PDF
    This Special Issue highlights the most recent research being carried out in the NLP field to discuss relative open issues, with a particular focus on both emerging approaches for language learning, understanding, production, and grounding interactively or autonomously from data in cognitive and neural systems, as well as on their potential or real applications in different domains
    corecore