147 research outputs found

    Eye tracking with EEG life-style

    Get PDF
    Innovative human-computer interaction paradigms with minimum motor control provide realistic interactions and have potential for use in assistive technologies. Among the human modalities, the eyes and the brain are the two modalities with minimum motor requirements. Most of the existing assistive technologies based on tracking the eyes (such as electrooculography and videooculography) are intrusive, limited to the laboratory environment and restrictive or are not accurate enough for real-life applications. The same limitations apply to brain activity monitoring systems such as electroencephalography (EEG). In this research, the objective is to employ a less-intrusive, consumer-grade EEG headset designed for mobile applications to track the user’s eyes and reliably estimate focus of foveal attention (FoA). To this end, signal processing approaches are proposed in order to classify different types of eye movements and estimate FoA. The FoA estimation is then improved using the brain responses to flickering stimuli recorded in EEG data. Afterwards, the FoA estimation is again improved by proposing an automated method to remove eye-related artefacts from brain responses to the stimuli. Finally, the FoA estimation is best improved by extracting eye-movement classification and brain-response detection features from EEG data projected into independent sources

    自然視条件下脳波計測の精度向上を可能にする眼球運動情報を用いた解析方法に関する研究

    Get PDF
    As the technique of electroencephalogram (EEG) developed for such many years, its application spreads and permeates into different areas, such like, clinical diagnosis, brain-computer interface, mental state estimation, and so on. Recently, using EEG as a tool for estimate people’s mental state and its extensional applications have jump into the limelight. These practical applications are urgently needed because the lack of subjectively estimating methods for the so called metal states, such as the concentration during study, the cognitive workload in driving, the calmness under mental training and so on. On the other hand, the application of EEG signals under daily life conditions especially when eye movements are totally without any constrains under a ‘fully free-view’ condition are obedient to the traditional ocular artifact suppression methods and how it meets the neuroscience standard has not been clearly expounded. This cause the ambiguities of explaining the obtain data and lead to susceptive results from data analysis. In our research, based on the basic idea of employing and extending EEG as the main tool for the estimation to mental state for daily life use, we confirmed the direction sensitivity of ocular artifacts induced by various types of eye movements and showed the most sensitive areas to the influence from it by multi zone-of-view experiment with standard neuroscience-targeted EEG devices. Enlightened from the results, we extended heuristic result on the use of more practical portable EEG devices. Besides, for a more realistic solution of the EEG based mental state estimation which is supposed to be applied for daily life environment, we studied the signal processing techniques of artifact suppression on low density electrode EEG and showed the importance of taking direction/eye position information into account when ocular artifact removal/suppression. In summary, this thesis has helped pave the practical way of using EEG signals toward the general use in daily life which has irregular eye movement patterns. We also pointed out the view-direction sensitivity of ocular artifact which helps the future studies to overcome the difficulties imposed on EEG applications by the free-view EEG tasks.九州工業大学博士学位論文 学位記番号:生工博甲第262号 学位授与年月日:平成28年3月26日1 Introduction|2 EEG measurements and ocular artifacts|3 Regression based solutions to ocular artifact suppression or removal in EEG|4 Measuring EEG with eye-tracking system|5 Direction and viewing area-sensitive influence of EOG artifacts revealed in the EEG topographic pattern analysis|6 Performance improvement of artifact removal with ocular information|7 Summary九州工業大学平成27年

    Signal validation in electroencephalography research

    Get PDF

    Sound-production Related Cognitive Tasks for Onset Detection in Self-Paced Brain-Computer Interfaces

    Get PDF
    Objective. The main goal of this research is proposing a novel method of onset detection for Self-Paced (SP) Brain-Computer Interfaces (BCIs) to increase usability and practicality of BCIs towards real-world uses from laboratory research settings. Approach. To achieve this goal, various Sound-Production Related Cognitive Tasks (SPRCTs) were tested against idle state in offline and simulated-online experiments. An online experiment was then conducted that turned a messenger dialogue on when a new message arrived by executing the Sound Imagery (SI) onset detection task in real-life scenarios (e.g. watching video, reading text). The SI task was chosen as an onset task because of its advantages over other tasks: 1) Intuitiveness. 2) Beneficial for people with motor disabilities. 3) No significant overlap with other common, spontaneous cognitive states becoming easier to use in daily-life situations. 4) No dependence on user’s mother language. Main results. The final online experimental results showed the new SI onset task had significantly better performance than the Motor Imagery (MI) approach. 84.04% (SI) vs 66.79% (MI) TFP score for sliding image scenario, 80.84% vs 61.07% for watching video task. Furthermore, the onset response speed showed the SI task being significantly faster than MI. In terms of usability, 75% of subjects answered SI was easier to use. Significance. The new SPRCT outperforms typical MI for SP onset detection BCIs (significantly better performance, faster onset response and easier usability), therefore it would be more easily used in daily-life situations. Another contribution of this thesis is a novel EMG artefact-contaminated EEG channel selection and handling method that showed significant class separation improvement against typical blind source separation techniques. A new performance evaluation metric for SP BCIs, called true-false positive score was also proposed as a standardised performance assessment method that considers idle period length, which was not considered in other typical metrics

    Brain-Computer Interface

    Get PDF
    Brain-computer interfacing (BCI) with the use of advanced artificial intelligence identification is a rapidly growing new technology that allows a silently commanding brain to manipulate devices ranging from smartphones to advanced articulated robotic arms when physical control is not possible. BCI can be viewed as a collaboration between the brain and a device via the direct passage of electrical signals from neurons to an external system. The book provides a comprehensive summary of conventional and novel methods for processing brain signals. The chapters cover a range of topics including noninvasive and invasive signal acquisition, signal processing methods, deep learning approaches, and implementation of BCI in experimental problems

    Recent Applications in Graph Theory

    Get PDF
    Graph theory, being a rigorously investigated field of combinatorial mathematics, is adopted by a wide variety of disciplines addressing a plethora of real-world applications. Advances in graph algorithms and software implementations have made graph theory accessible to a larger community of interest. Ever-increasing interest in machine learning and model deployments for network data demands a coherent selection of topics rewarding a fresh, up-to-date summary of the theory and fruitful applications to probe further. This volume is a small yet unique contribution to graph theory applications and modeling with graphs. The subjects discussed include information hiding using graphs, dynamic graph-based systems to model and control cyber-physical systems, graph reconstruction, average distance neighborhood graphs, and pure and mixed-integer linear programming formulations to cluster networks

    Electro-Encephalography and Electro-Oculography in Aeronautics: A Review Over the Last Decade (2010–2020)

    Get PDF
    Electro-encephalography (EEG) and electro-oculography (EOG) are methods of electrophysiological monitoring that have potentially fruitful applications in neuroscience, clinical exploration, the aeronautical industry, and other sectors. These methods are often the most straightforward way of evaluating brain oscillations and eye movements, as they use standard laboratory or mobile techniques. This review describes the potential of EEG and EOG systems and the application of these methods in aeronautics. For example, EEG and EOG signals can be used to design brain-computer interfaces (BCI) and to interpret brain activity, such as monitoring the mental state of a pilot in determining their workload. The main objectives of this review are to, (i) offer an in-depth review of literature on the basics of EEG and EOG and their application in aeronautics; (ii) to explore the methodology and trends of research in combined EEG-EOG studies over the last decade; and (iii) to provide methodological guidelines for beginners and experts when applying these methods in environments outside the laboratory, with a particular focus on human factors and aeronautics. The study used databases from scientific, clinical, and neural engineering fields. The review first introduces the characteristics and the application of both EEG and EOG in aeronautics, undertaking a large review of relevant literature, from early to more recent studies. We then built a novel taxonomy model that includes 150 combined EEG-EOG papers published in peer-reviewed scientific journals and conferences from January 2010 to March 2020. Several data elements were reviewed for each study (e.g., pre-processing, extracted features and performance metrics), which were then examined to uncover trends in aeronautics and summarize interesting methods from this important body of literature. Finally, the review considers the advantages and limitations of these methods as well as future challenges

    Brain Computer Interfaces and Emotional Involvement: Theory, Research, and Applications

    Get PDF
    This reprint is dedicated to the study of brain activity related to emotional and attentional involvement as measured by Brain–computer interface (BCI) systems designed for different purposes. A BCI system can translate brain signals (e.g., electric or hemodynamic brain activity indicators) into a command to execute an action in the BCI application (e.g., a wheelchair, the cursor on the screen, a spelling device or a game). These tools have the advantage of having real-time access to the ongoing brain activity of the individual, which can provide insight into the user’s emotional and attentional states by training a classification algorithm to recognize mental states. The success of BCI systems in contemporary neuroscientific research relies on the fact that they allow one to “think outside the lab”. The integration of technological solutions, artificial intelligence and cognitive science allowed and will allow researchers to envision more and more applications for the future. The clinical and everyday uses are described with the aim to invite readers to open their minds to imagine potential further developments

    INVESTIGATION, DEVELOPMENT AND APPLICATION OF KNOWLEDGE BASED DIGITAL SIGNAL PROCESSING METHODS FOR ENHANCING HUMAN EEGsJ

    Get PDF
    This thesis details the development of new and reliable techniques for enhancing the human Electroencephalogram {EEGI. This development has involved the incorporation of adaptive signal processing (ASP) techniques, within an artificial intelligence (Al) paradigm, more closely matching the implicit signal analysis capabilities of the EEG expert. The need for EEG enhancement, by removal of ocular artefact (OA) , is widely recognised. However, conventional ASP techniques for OA removal fail to differentiate between OAs and some abnormal cerebral waveforms, such as frontal slow waves. OA removal often results in the corruption of these diagnostically important cerebral waveforms. However, the experienced EEG expert is often able to differentiate between OA and abnormal slow waveforms, and between different types of OA. This EEG expert knowledge is integrated with selectable adaptive filters in an intelligent OA removal system (tOARS). The EEG is enhanced by only removing OA when OA is identified, and by applying the OA removal algorithm pre-set for the specific OA type. Extensive EEG data acquisition has provided a database of abnormal EEG recordings from over 50 patients, exhibiting a variety of cerebral abnormalities. Structured knowledge elicitation has provided over 60 production rules for OA identification in the presence of abnormal frontal slow waveforms, and for distinguishing between OA types. The lOARS was implemented on personal computer (PCI based hardware in PROLOG and C software languages. 2-second, 18-channel, EEG signal segments are subjected to digital signal processing, to extract salient features from time, frequency, and contextual domains. OA is identified using a forward/backward hybrid inference engine, with uncertainty management, using the elicited expert rules and extracted signal features. Evaluation of the system has been carried out using both normal and abnormal patient EEGs, and this shows a high agreement (82.7%) in OA identification between the lOARS and an EEG expert. This novel development provides a significant improvement in OA removal, and EEG signal enhancement, and will allow more reliable automated EEG analysis. The investigation detailed in this thesis has led to 4 papers, including one in a special proceedings of the lEE, and been subject to several review articles.Department of Neurophysiology, Derriford Hospital, Plymouth, Devo

    Biomedical signal filtering for noisy environments

    Full text link
     Luke\u27s work addresses issue of robustly attenuating multi-source noise from surface EEG signals using a novel Adaptive-Multiple-Reference Least-Means-Squares filter (AMR-LMS). In practice, the filter successfully removes electrical interference and muscle noise generated during movement which contaminates EEG, allowing subjects to maintain maximum mobility throughout signal acquisition and during the use of a Brain Computer Interface
    corecore