2,680 research outputs found

    Energy Efficient Bandwidth Management in Wireless Sensor Network

    Get PDF

    MAC/Routing design for under water sensor networks

    Get PDF
    The huge advances in communication technologies and Micro Electrical and Mechanical Systems (MEMS) have triggered a revolution in sensor networks. One major application of sensor networks is in the investigation of complex and uninhabited under water surfaces; such sensor networks are called the Underwater Wireless Sensor Networks (UWSN). UWSN comprises of a number of sensors which are submerged in water and one or several surface stations or a sinks at which the sensed data is collected. In some underwater sensor applications, autonomous underwater vehicles (AUVs) could be used. The underwater sensor nodes communicate with each other using acoustic signals. Applications for this type of networks include oceanographic data collection, pollution monitoring, offshore exploration and tactical surveillance applications. The novel networking paradigm of UWSN is facing a totally different operating environment than the ground based wireless sensor networks. This introduces new challenges such as huge propagation delays, and limited acoustic link capacity with high attenuation factors. These new challenges have their own impact on the design of most of the networking layers preventing researchers from using the same layers used for other networks. The most affected layers are the Physical, Medium Access Control (MAC), Routing and Transport layers. This work will introduce novel routing and MAC layers’ protocols for UWSNs. The routing protocol will adopt the minimum spanning tree algorithm and focus on maximizing the connectivity of the network, which means maximizing the total number of nodes connected to the root or the sink in this case. The protocol will try also to provide a minimum hop connection for all the nodes in the network taking into account the residual energy, location information and number of children at the next hop node. The other contribution of this work is a MAC Protocol which will incorporate the topology information provided by the routing protocol to minimize the collisions and energy wastage in data transmission. The MAC Protocol will also try to shorten the queuing delays at the intermediate nodes for a message traveling from source to the sink. A comparison will be conducted with other existing routing and MAC protocols. The routing protocol will be tested and compared with the E-Span spanning tree algorithm for data aggregation. The MAC protocol will be compared with Park\u27s protocol proposed in [2] in terms of performance metrics like end-to-end delay and the number of collisions. We will also explore the ability of the proposed protocols to enhance the life span of the network

    Real-Time Data Acquisition in Wireless Sensor Networks

    Get PDF

    Unified clustering and communication protocol for wireless sensor networks

    Get PDF
    In this paper we present an energy-efficient cross layer protocol for providing application specific reservations in wireless senor networks called the “Unified Clustering and Communication Protocol ” (UCCP). Our modular cross layered framework satisfies three wireless sensor network requirements, namely, the QoS requirement of heterogeneous applications, energy aware clustering and data forwarding by relay sensor nodes. Our unified design approach is motivated by providing an integrated and viable solution for self organization and end-to-end communication is wireless sensor networks. Dynamic QoS based reservation guarantees are provided using a reservation-based TDMA approach. Our novel energy-efficient clustering approach employs a multi-objective optimization technique based on OR (operations research) practices. We adopt a simple hierarchy in which relay nodes forward data messages from cluster head to the sink, thus eliminating the overheads needed to maintain a routing protocol. Simulation results demonstrate that UCCP provides an energy-efficient and scalable solution to meet the application specific QoS demands in resource constrained sensor nodes. Index Terms — wireless sensor networks, unified communication, optimization, clustering and quality of service

    Collision Free Communication for Energy Saving in Wireless Sensor Networks

    Get PDF
    International audienceA Wireless Sensor Network (WSN) distinguishes from other wireless or wired networks through its capability of interaction with the environment. Such networks have been proposed for various applications including search and rescue, disaster relief, smart environments, and localization systems. These applications require a large amount of battery-powered wireless sensors, and are generally designed for long-term deployments with no human intervention. Consequently, energy efficiency is one of the main design objectives for these sensor networks

    Overlay networks for smart grids

    Get PDF
    • …
    corecore