12,007 research outputs found

    Mining Novel Multivariate Relationships in Time Series Data Using Correlation Networks

    Full text link
    In many domains, there is significant interest in capturing novel relationships between time series that represent activities recorded at different nodes of a highly complex system. In this paper, we introduce multipoles, a novel class of linear relationships between more than two time series. A multipole is a set of time series that have strong linear dependence among themselves, with the requirement that each time series makes a significant contribution to the linear dependence. We demonstrate that most interesting multipoles can be identified as cliques of negative correlations in a correlation network. Such cliques are typically rare in a real-world correlation network, which allows us to find almost all multipoles efficiently using a clique-enumeration approach. Using our proposed framework, we demonstrate the utility of multipoles in discovering new physical phenomena in two scientific domains: climate science and neuroscience. In particular, we discovered several multipole relationships that are reproducible in multiple other independent datasets and lead to novel domain insights.Comment: This is the accepted version of article submitted to IEEE Transactions on Knowledge and Data Engineering 201

    RASCAL: calculation of graph similarity using maximum common edge subgraphs

    Get PDF
    A new graph similarity calculation procedure is introduced for comparing labeled graphs. Given a minimum similarity threshold, the procedure consists of an initial screening process to determine whether it is possible for the measure of similarity between the two graphs to exceed the minimum threshold, followed by a rigorous maximum common edge subgraph (MCES) detection algorithm to compute the exact degree and composition of similarity. The proposed MCES algorithm is based on a maximum clique formulation of the problem and is a significant improvement over other published algorithms. It presents new approaches to both lower and upper bounding as well as vertex selection

    A novel evolutionary formulation of the maximum independent set problem

    Full text link
    We introduce a novel evolutionary formulation of the problem of finding a maximum independent set of a graph. The new formulation is based on the relationship that exists between a graph's independence number and its acyclic orientations. It views such orientations as individuals and evolves them with the aid of evolutionary operators that are very heavily based on the structure of the graph and its acyclic orientations. The resulting heuristic has been tested on some of the Second DIMACS Implementation Challenge benchmark graphs, and has been found to be competitive when compared to several of the other heuristics that have also been tested on those graphs

    Parallel Maximum Clique Algorithms with Applications to Network Analysis and Storage

    Full text link
    We propose a fast, parallel maximum clique algorithm for large sparse graphs that is designed to exploit characteristics of social and information networks. The method exhibits a roughly linear runtime scaling over real-world networks ranging from 1000 to 100 million nodes. In a test on a social network with 1.8 billion edges, the algorithm finds the largest clique in about 20 minutes. Our method employs a branch and bound strategy with novel and aggressive pruning techniques. For instance, we use the core number of a vertex in combination with a good heuristic clique finder to efficiently remove the vast majority of the search space. In addition, we parallelize the exploration of the search tree. During the search, processes immediately communicate changes to upper and lower bounds on the size of maximum clique, which occasionally results in a super-linear speedup because vertices with large search spaces can be pruned by other processes. We apply the algorithm to two problems: to compute temporal strong components and to compress graphs.Comment: 11 page
    • …
    corecore