624 research outputs found

    RF Localization in Indoor Environment

    Get PDF
    In this paper indoor localization system based on the RF power measurements of the Received Signal Strength (RSS) in WLAN environment is presented. Today, the most viable solution for localization is the RSS fingerprinting based approach, where in order to establish a relationship between RSS values and location, different machine learning approaches are used. The advantage of this approach based on WLAN technology is that it does not need new infrastructure (it reuses already and widely deployed equipment), and the RSS measurement is part of the normal operating mode of wireless equipment. We derive the Cramer-Rao Lower Bound (CRLB) of localization accuracy for RSS measurements. In analysis of the bound we give insight in localization performance and deployment issues of a localization system, which could help designing an efficient localization system. To compare different machine learning approaches we developed a localization system based on an artificial neural network, k-nearest neighbors, probabilistic method based on the Gaussian kernel and the histogram method. We tested the developed system in real world WLAN indoor environment, where realistic RSS measurements were collected. Experimental comparison of the results has been investigated and average location estimation error of around 2 meters was obtained

    RFID Localisation For Internet Of Things Smart Homes: A Survey

    Full text link
    The Internet of Things (IoT) enables numerous business opportunities in fields as diverse as e-health, smart cities, smart homes, among many others. The IoT incorporates multiple long-range, short-range, and personal area wireless networks and technologies into the designs of IoT applications. Localisation in indoor positioning systems plays an important role in the IoT. Location Based IoT applications range from tracking objects and people in real-time, assets management, agriculture, assisted monitoring technologies for healthcare, and smart homes, to name a few. Radio Frequency based systems for indoor positioning such as Radio Frequency Identification (RFID) is a key enabler technology for the IoT due to its costeffective, high readability rates, automatic identification and, importantly, its energy efficiency characteristic. This paper reviews the state-of-the-art RFID technologies in IoT Smart Homes applications. It presents several comparable studies of RFID based projects in smart homes and discusses the applications, techniques, algorithms, and challenges of adopting RFID technologies in IoT smart home systems.Comment: 18 pages, 2 figures, 3 table

    AoA-aware Probabilistic Indoor Location Fingerprinting using Channel State Information

    Full text link
    With expeditious development of wireless communications, location fingerprinting (LF) has nurtured considerable indoor location based services (ILBSs) in the field of Internet of Things (IoT). For most pattern-matching based LF solutions, previous works either appeal to the simple received signal strength (RSS), which suffers from dramatic performance degradation due to sophisticated environmental dynamics, or rely on the fine-grained physical layer channel state information (CSI), whose intricate structure leads to an increased computational complexity. Meanwhile, the harsh indoor environment can also breed similar radio signatures among certain predefined reference points (RPs), which may be randomly distributed in the area of interest, thus mightily tampering the location mapping accuracy. To work out these dilemmas, during the offline site survey, we first adopt autoregressive (AR) modeling entropy of CSI amplitude as location fingerprint, which shares the structural simplicity of RSS while reserving the most location-specific statistical channel information. Moreover, an additional angle of arrival (AoA) fingerprint can be accurately retrieved from CSI phase through an enhanced subspace based algorithm, which serves to further eliminate the error-prone RP candidates. In the online phase, by exploiting both CSI amplitude and phase information, a novel bivariate kernel regression scheme is proposed to precisely infer the target's location. Results from extensive indoor experiments validate the superior localization performance of our proposed system over previous approaches

    Map matching by using inertial sensors: literature review

    Get PDF
    This literature review aims to clarify what is known about map matching by using inertial sensors and what are the requirements for map matching, inertial sensors, placement and possible complementary position technology. The target is to develop a wearable location system that can position itself within a complex construction environment automatically with the aid of an accurate building model. The wearable location system should work on a tablet computer which is running an augmented reality (AR) solution and is capable of track and visualize 3D-CAD models in real environment. The wearable location system is needed to support the system in initialization of the accurate camera pose calculation and automatically finding the right location in the 3D-CAD model. One type of sensor which does seem applicable to people tracking is inertial measurement unit (IMU). The IMU sensors in aerospace applications, based on laser based gyroscopes, are big but provide a very accurate position estimation with a limited drift. Small and light units such as those based on Micro-Electro-Mechanical (MEMS) sensors are becoming very popular, but they have a significant bias and therefore suffer from large drifts and require method for calibration like map matching. The system requires very little fixed infrastructure, the monetary cost is proportional to the number of users, rather than to the coverage area as is the case for traditional absolute indoor location systems.Siirretty Doriast

    Application of Channel Modeling for Indoor Localization Using TOA and RSS

    Get PDF
    Recently considerable attention has been paid to indoor geolocation using wireless local area networks (WLAN) and wireless personal area networks (WPAN) devices. As more applications using these technologies are emerging in the market, the need for accurate and reliable localization increases. In response to this need, a number of technologies and associated algorithms have been introduced in the literature. These algorithms resolve the location either by using estimated distances between a mobile station (MS) and at least three reference points (via triangulation) or pattern recognition through radio frequency (RF) fingerprinting. Since RF fingerprinting, which requires on site measurements is a time consuming process, it is ideal to replace this procedure with the results obtained from radio channel modeling techniques. Localization algorithms either use the received signal strength (RSS) or time of arrival (TOA) of the received signal as their localization metric. TOA based systems are sensitive to the available bandwidth, and also to the occurrence of undetected direct path (UDP) channel conditions, while RSS based systems are less sensitive to the bandwidth and more resilient to UDP conditions. Therefore, the comparative performance evaluation of different positioning systems is a multifaceted and challenging problem. This dissertation demonstrates the viability of radio channel modeling techniques to eliminate the costly fingerprinting process in pattern recognition algorithms by introducing novel ray tracing (RT) assisted RSS and TOA based algorithms. Two sets of empirical data obtained by radio channel measurements are used to create a baseline for comparative performance evaluation of localization algorithms. The first database is obtained by WiFi RSS measurements in the first floor of the Atwater Kent laboratory; an academic building on the campus of WPI; and the other by ultra wideband (UWB) channel measurements in the third floor of the same building. Using the results of measurement campaign, we specifically analyze the comparative behavior of TOA- and RSS-based indoor localization algorithms employing triangulation or pattern recognition with different bandwidths adopted in WLAN and WPAN systems. Finally, we introduce a new RT assisted hybrid RSS-TOA based algorithm which employs neural networks. The resulting algorithm demonstrates a superior performance compared to the conventional RSS and TOA based algorithms in wideband systems

    Smart Indoor Positioning/Location and Navigation: A Lightweight Approach

    Get PDF
    In this paper a new location indoor system is presented, which shows the position and orientation of the user in closed environments, as well as the optimal route to his destination through location tags. This system is called Labelee, and it makes easier the interaction between users and devices through QR code scanning or by NFC tag reading, because this technology is increasingly common in the latest smartphones. With this system, users could locate themselves into an enclosure with less interaction

    Enhanced indoor location tracking through body shadowing compensation

    Get PDF
    This paper presents a radio frequency (RF)-based location tracking system that improves its performance by eliminating the shadowing caused by the human body of the user being tracked. The presence of such a user will influence the RF signal paths between a body-worn node and the receiving nodes. This influence will vary with the user's location and orientation and, as a result, will deteriorate the performance regarding location tracking. By using multiple mobile nodes, placed on different parts of a human body, we exploit the fact that the combination of multiple measured signal strengths will show less variation caused by the user's body. Another method is to compensate explicitly for the influence of the body by using the user's orientation toward the fixed infrastructure nodes. Both approaches can be independently combined and reduce the influence caused by body shadowing, hereby improving the tracking accuracy. The overall system performance is extensively verified on a building-wide testbed for sensor experiments. The results show a significant improvement in tracking accuracy. The total improvement in mean accuracy is 38.1% when using three mobile nodes instead of one and simultaneously compensating for the user's orientation

    Combining similarity functions and majority rules for multi-building, multi-floor, WiFi positioning

    Get PDF
    Fingerprint is one of the most widely used methods for locating devices in indoor wireless environments and we have witnessed the emergence of several positioning systems aimed for indoor environments based on this approach. However, additional efforts are required in order to improve the performance of these systems so that applications that are highly dependent on user location can provide better services to its users. In this work we discuss some improvements to the positioning accuracy of the fingerprint-based systems. Our algorithm ranks the information about the location in a hierarchical way by identifying the building, the floor, the room and the geometric position. The proposed fingerprint method uses a previously stored map of the signal strength at several positions and determines the position using similarity functions and majority rules. In particular, we compare different similarity functions to understand their impact on the accuracy of the positioning system. The experimental results confirm the possibility of correctly determining the building, the floor and the room where the persons or the objects are at with high rates, and with an average error around 3 meters. Moreover, detailed statistics about the errors are provided, showing that the average error metric, often used by many authors, hides many aspects on the system performance.This work was supported by the FEDER program through the COMPETE and the Portuguese Science and Technology Foundation (FCT), within the context of projects SUM – Sensing and Understanding human Motion dynamics (PTDC/EIA-EIA/113933/2009) and TICE.Mobilidade (COMPETE 13843)
    corecore