264 research outputs found

    A novel agent-based framework in bridge-mode hypervisors of cloud security

    Get PDF
    Cloud computing has been introduced as a tool for improving IT proficiency and business responsiveness for organizations as it delivers flexible hardware and software services as well as providing an array of fundamentally systematized IT processes. Despite its many advantages, cloud computing security has been a major concern for organizations that are making the transition towards usage of this technology. In this paper, we focus on improving cloud computing security by managing and isolating shared network resources in bridge-mode hypervisors

    Building an Emulation Environment for Cyber Security Analyses of Complex Networked Systems

    Full text link
    Computer networks are undergoing a phenomenal growth, driven by the rapidly increasing number of nodes constituting the networks. At the same time, the number of security threats on Internet and intranet networks is constantly growing, and the testing and experimentation of cyber defense solutions requires the availability of separate, test environments that best emulate the complexity of a real system. Such environments support the deployment and monitoring of complex mission-driven network scenarios, thus enabling the study of cyber defense strategies under real and controllable traffic and attack scenarios. In this paper, we propose a methodology that makes use of a combination of techniques of network and security assessment, and the use of cloud technologies to build an emulation environment with adjustable degree of affinity with respect to actual reference networks or planned systems. As a byproduct, starting from a specific study case, we collected a dataset consisting of complete network traces comprising benign and malicious traffic, which is feature-rich and publicly available

    HyBIS: Windows Guest Protection through Advanced Memory Introspection

    Full text link
    Effectively protecting the Windows OS is a challenging task, since most implementation details are not publicly known. Windows has always been the main target of malwares that have exploited numerous bugs and vulnerabilities. Recent trusted boot and additional integrity checks have rendered the Windows OS less vulnerable to kernel-level rootkits. Nevertheless, guest Windows Virtual Machines are becoming an increasingly interesting attack target. In this work we introduce and analyze a novel Hypervisor-Based Introspection System (HyBIS) we developed for protecting Windows OSes from malware and rootkits. The HyBIS architecture is motivated and detailed, while targeted experimental results show its effectiveness. Comparison with related work highlights main HyBIS advantages such as: effective semantic introspection, support for 64-bit architectures and for latest Windows (8.x and 10), advanced malware disabling capabilities. We believe the research effort reported here will pave the way to further advances in the security of Windows OSes

    Cross-VM network attacks & their countermeasures within cloud computing environments

    Get PDF
    Cloud computing is a contemporary model in which the computing resources are dynamically scaled-up and scaled-down to customers, hosted within large-scale multi-tenant systems. These resources are delivered as improved, cost-effective and available upon request to customers. As one of the main trends of IT industry in modern ages, cloud computing has extended momentum and started to transform the mode enterprises build and offer IT solutions. The primary motivation in using cloud computing model is cost-effectiveness. These motivations can compel Information and Communication Technologies (ICT) organizations to shift their sensitive data and critical infrastructure on cloud environments. Because of the complex nature of underlying cloud infrastructure, the cloud environments are facing a large number of challenges of misconfigurations, cyber-attacks, root-kits, malware instances etc which manifest themselves as a serious threat to cloud environments. These threats noticeably decline the general trustworthiness, reliability and accessibility of the cloud. Security is the primary concern of a cloud service model. However, a number of significant challenges revealed that cloud environments are not as much secure as one would expect. There is also a limited understanding regarding the offering of secure services in a cloud model that can counter such challenges. This indicates the significance of the fact that what establishes the threat in cloud model. One of the main threats in a cloud model is of cost-effectiveness, normally cloud providers reduce cost by sharing infrastructure between multiple un-trusted VMs. This sharing has also led to several problems including co-location attacks. Cloud providers mitigate co-location attacks by introducing the concept of isolation. Due to this, a guest VM cannot interfere with its host machine, and with other guest VMs running on the same system. Such isolation is one of the prime foundations of cloud security for major public providers. However, such logical boundaries are not impenetrable. A myriad of previous studies have demonstrated how co-resident VMs could be vulnerable to attacks through shared file systems, cache side-channels, or through compromising of hypervisor layer using rootkits. Thus, the threat of cross-VM attacks is still possible because an attacker uses one VM to control or access other VMs on the same hypervisor. Hence, multiple methods are devised for strategic VM placement in order to exploit co-residency. Despite the clear potential for co-location attacks for abusing shared memory and disk, fine grained cross-VM network-channel attacks have not yet been demonstrated. Current network based attacks exploit existing vulnerabilities in networking technologies, such as ARP spoofing and DNS poisoning, which are difficult to use for VM-targeted attacks. The most commonly discussed network-based challenges focus on the fact that cloud providers place more layers of isolation between co-resided VMs than in non-virtualized settings because the attacker and victim are often assigned to separate segmentation of virtual networks. However, it has been demonstrated that this is not necessarily sufficient to prevent manipulation of a victim VM’s traffic. This thesis presents a comprehensive method and empirical analysis on the advancement of co-location attacks in which a malicious VM can negatively affect the security and privacy of other co-located VMs as it breaches the security perimeter of the cloud model. In such a scenario, it is imperative for a cloud provider to be able to appropriately secure access to the data such that it reaches to the appropriate destination. The primary contribution of the work presented in this thesis is to introduce two innovative attack models in leading cloud models, impersonation and privilege escalation, that successfully breach the security perimeter of cloud models and also propose countermeasures that block such types of attacks. The attack model revealed in this thesis, is a combination of impersonation and mirroring. This experimental setting can exploit the network channel of cloud model and successfully redirects the network traffic of other co-located VMs. The main contribution of this attack model is to find a gap in the contemporary network cloud architecture that an attacker can exploit. Prior research has also exploited the network channel using ARP poisoning, spoofing but all such attack schemes have been countered as modern cloud providers place more layers of security features than in preceding settings. Impersonation relies on the already existing regular network devices in order to mislead the security perimeter of the cloud model. The other contribution presented of this thesis is ‘privilege escalation’ attack in which a non-root user can escalate a privilege level by using RoP technique on the network channel and control the management domain through which attacker can manage to control the other co-located VMs which they are not authorized to do so. Finally, a countermeasure solution has been proposed by directly modifying the open source code of cloud model that can inhibit all such attacks

    Architecture de sécurité de bout en bout et mécanismes d'autoprotection pour les environnements Cloud

    Get PDF
    Since several years the virtualization of infrastructures became one of the major research challenges, consuming less energy while delivering new services. However, many attacks hinder the global adoption of Cloud computing. Self-protection has recently raised growing interest as possible element of answer to the cloud computing infrastructure protection challenge. Yet, previous solutions fall at the last hurdle as they overlook key features of the cloud, by lack of flexible security policies, cross-layered defense, multiple control granularities, and open security architectures. This thesis presents VESPA, a self-protection architecture for cloud infrastructures. Flexible coordination between self-protection loops allows enforcing a rich spectrum of security strategies. A multi-plane extensible architecture also enables simple integration of commodity security components.Recently, some of the most powerful attacks against cloud computing infrastructures target the Virtual Machine Monitor (VMM). In many case, the main attack vector is a poorly confined device driver. Current architectures offer no protection against such attacks. This thesis proposes an altogether different approach by presenting KungFuVisor, derived from VESPA, a framework to build self-defending hypervisors. The result is a very flexible self-protection architecture, enabling to enforce dynamically a rich spectrum of remediation actions over different parts of the VMM, also facilitating defense strategy administration. We showed the application to three different protection scheme: virus infection, mobile clouds and hypervisor drivers. Indeed VESPA can enhance cloud infrastructure securityLa virtualisation des infrastructures est devenue un des enjeux majeurs dans la recherche, qui fournissent des consommations d'Ă©nergie moindres et des nouvelles opportunitĂ©s. Face Ă  de multiples menaces et des mĂ©canismes de dĂ©fense hĂ©tĂ©rogĂšnes, l'approche autonomique propose une gestion simplifiĂ©e, robuste et plus efficace de la sĂ©curitĂ© du cloud. Aujourd'hui, les solutions existantes s'adaptent difficilement. Il manque des politiques de sĂ©curitĂ© flexibles, une dĂ©fense multi-niveaux, des contrĂŽles Ă  granularitĂ© variable, ou encore une architecture de sĂ©curitĂ© ouverte. Ce mĂ©moire prĂ©sente VESPA, une architecture d'autoprotection pour les infrastructures cloud. VESPA est construit autour de politiques qui peuvent rĂ©guler la sĂ©curitĂ© Ă  plusieurs niveaux. La coordination flexible entre les boucles d'autoprotection rĂ©alise un large spectre de stratĂ©gies de sĂ©curitĂ© comme des dĂ©tections et des rĂ©actions sur plusieurs niveaux. Une architecture extensible multi plans permet d'intĂ©grer simplement des Ă©lĂ©ments dĂ©jĂ  prĂ©sents. Depuis peu, les attaques les plus critiques contre les infrastructures cloud visent la brique la plus sensible: l'hyperviseur. Le vecteur d'attaque principal est un pilote de pĂ©riphĂ©rique mal confinĂ©. Les mĂ©canismes de dĂ©fense mis en jeu sont statiques et difficile Ă  gĂ©rer. Nous proposons une approche diffĂ©rente avec KungFuVisor, un canevas logiciel pour crĂ©er des hyperviseurs autoprotĂ©gĂ©s spĂ©cialisant l'architecture VESPA. Nous avons montrĂ© son application Ă  trois types de protection diffĂ©rents : les attaques virales, la gestion hĂ©tĂ©rogĂšne multi-domaines et l'hyperviseur. Ainsi la sĂ©curitĂ© des infrastructures cloud peut ĂȘtre amĂ©liorĂ©e grĂące Ă  VESP

    Continuous monitoring methods to achieve resiliency for virtual machines

    Get PDF
    This dissertation describes monitoring methods to achieve both security and reliability in virtualized computer systems. Our key contribution is showing how we can perform continuous monitoring and leverage information across different layers of a virtualized computer system to detect malicious attacks and accidental failures. For monitoring software running inside a virtual ma- chine, we introduce HyperTap and Hprobes, which are out-of-VM monitoring frameworks that facilitate detection of security and reliability incidents oc- curring inside a VM. For monitoring the hypervisor, we introduce hShield, a Control-Flow Integrity (CFI) enforcement method to detect VM-escape at- tacks. HyperTap, Hprobes, and hShield create a complete chain-of-trust for the entire virtualization software stack

    Demystifying Internet of Things Security

    Get PDF
    Break down the misconceptions of the Internet of Things by examining the different security building blocks available in Intel Architecture (IA) based IoT platforms. This open access book reviews the threat pyramid, secure boot, chain of trust, and the SW stack leading up to defense-in-depth. The IoT presents unique challenges in implementing security and Intel has both CPU and Isolated Security Engine capabilities to simplify it. This book explores the challenges to secure these devices to make them immune to different threats originating from within and outside the network. The requirements and robustness rules to protect the assets vary greatly and there is no single blanket solution approach to implement security. Demystifying Internet of Things Security provides clarity to industry professionals and provides and overview of different security solutions What You'll Learn Secure devices, immunizing them against different threats originating from inside and outside the network Gather an overview of the different security building blocks available in Intel Architecture (IA) based IoT platforms Understand the threat pyramid, secure boot, chain of trust, and the software stack leading up to defense-in-depth Who This Book Is For Strategists, developers, architects, and managers in the embedded and Internet of Things (IoT) space trying to understand and implement the security in the IoT devices/platforms
    • 

    corecore