5,376 research outputs found

    Multi-Modal Imitation Learning from Unstructured Demonstrations using Generative Adversarial Nets

    Full text link
    Imitation learning has traditionally been applied to learn a single task from demonstrations thereof. The requirement of structured and isolated demonstrations limits the scalability of imitation learning approaches as they are difficult to apply to real-world scenarios, where robots have to be able to execute a multitude of tasks. In this paper, we propose a multi-modal imitation learning framework that is able to segment and imitate skills from unlabelled and unstructured demonstrations by learning skill segmentation and imitation learning jointly. The extensive simulation results indicate that our method can efficiently separate the demonstrations into individual skills and learn to imitate them using a single multi-modal policy. The video of our experiments is available at http://sites.google.com/view/nips17intentionganComment: Paper accepted to NIPS 201

    Multi-View Frame Reconstruction with Conditional GAN

    Full text link
    Multi-view frame reconstruction is an important problem particularly when multiple frames are missing and past and future frames within the camera are far apart from the missing ones. Realistic coherent frames can still be reconstructed using corresponding frames from other overlapping cameras. We propose an adversarial approach to learn the spatio-temporal representation of the missing frame using conditional Generative Adversarial Network (cGAN). The conditional input to each cGAN is the preceding or following frames within the camera or the corresponding frames in other overlapping cameras, all of which are merged together using a weighted average. Representations learned from frames within the camera are given more weight compared to the ones learned from other cameras when they are close to the missing frames and vice versa. Experiments on two challenging datasets demonstrate that our framework produces comparable results with the state-of-the-art reconstruction method in a single camera and achieves promising performance in multi-camera scenario.Comment: 5 pages, 4 figures, 3 tables, Accepted at IEEE Global Conference on Signal and Information Processing, 201

    Controllable Image-to-Video Translation: A Case Study on Facial Expression Generation

    Full text link
    The recent advances in deep learning have made it possible to generate photo-realistic images by using neural networks and even to extrapolate video frames from an input video clip. In this paper, for the sake of both furthering this exploration and our own interest in a realistic application, we study image-to-video translation and particularly focus on the videos of facial expressions. This problem challenges the deep neural networks by another temporal dimension comparing to the image-to-image translation. Moreover, its single input image fails most existing video generation methods that rely on recurrent models. We propose a user-controllable approach so as to generate video clips of various lengths from a single face image. The lengths and types of the expressions are controlled by users. To this end, we design a novel neural network architecture that can incorporate the user input into its skip connections and propose several improvements to the adversarial training method for the neural network. Experiments and user studies verify the effectiveness of our approach. Especially, we would like to highlight that even for the face images in the wild (downloaded from the Web and the authors' own photos), our model can generate high-quality facial expression videos of which about 50\% are labeled as real by Amazon Mechanical Turk workers.Comment: 10 page
    • …
    corecore