2,088 research outputs found

    A Language and Hardware Independent Approach to Quantum-Classical Computing

    Full text link
    Heterogeneous high-performance computing (HPC) systems offer novel architectures which accelerate specific workloads through judicious use of specialized coprocessors. A promising architectural approach for future scientific computations is provided by heterogeneous HPC systems integrating quantum processing units (QPUs). To this end, we present XACC (eXtreme-scale ACCelerator) --- a programming model and software framework that enables quantum acceleration within standard or HPC software workflows. XACC follows a coprocessor machine model that is independent of the underlying quantum computing hardware, thereby enabling quantum programs to be defined and executed on a variety of QPUs types through a unified application programming interface. Moreover, XACC defines a polymorphic low-level intermediate representation, and an extensible compiler frontend that enables language independent quantum programming, thus promoting integration and interoperability across the quantum programming landscape. In this work we define the software architecture enabling our hardware and language independent approach, and demonstrate its usefulness across a range of quantum computing models through illustrative examples involving the compilation and execution of gate and annealing-based quantum programs

    Kassiopeia: A Modern, Extensible C++ Particle Tracking Package

    Full text link
    The Kassiopeia particle tracking framework is an object-oriented software package using modern C++ techniques, written originally to meet the needs of the KATRIN collaboration. Kassiopeia features a new algorithmic paradigm for particle tracking simulations which targets experiments containing complex geometries and electromagnetic fields, with high priority put on calculation efficiency, customizability, extensibility, and ease of use for novice programmers. To solve Kassiopeia's target physics problem the software is capable of simulating particle trajectories governed by arbitrarily complex differential equations of motion, continuous physics processes that may in part be modeled as terms perturbing that equation of motion, stochastic processes that occur in flight such as bulk scattering and decay, and stochastic surface processes occuring at interfaces, including transmission and reflection effects. This entire set of computations takes place against the backdrop of a rich geometry package which serves a variety of roles, including initialization of electromagnetic field simulations and the support of state-dependent algorithm-swapping and behavioral changes as a particle's state evolves. Thanks to the very general approach taken by Kassiopeia it can be used by other experiments facing similar challenges when calculating particle trajectories in electromagnetic fields. It is publicly available at https://github.com/KATRIN-Experiment/Kassiopei

    NOVEL RESOURCE EFFICIENT CIRCUIT DESIGNS FOR REBOOTING COMPUTING

    Get PDF
    CMOS based computing is reaching its limits. To take computation beyond Moores law (the number of transistors and hence processing power on a chip doubles every 18 months to 3 years) requires research explorations in (i) new materials, devices, and processes, (ii) new architectures and algorithms, (iii) new paradigm of logic bit representation. The focus is on fundamental new ways to compute under the umbrella of rebooting computing such as spintronics, quantum computing, adiabatic and reversible computing. Therefore, this thesis highlights explicitly Quantum computing and Adiabatic logic, two new computing paradigms that come under the umbrella of rebooting computing. Quantum computing is investigated for its promising application in high-performance computing. The first contribution of this thesis is the design of two resource-efficient designs for quantum integer division. The first design is based on non-restoring division algorithm and the second one is based on restoring division algorithm. Both the designs are compared and shown to be superior to the existing work in terms of T-count and T-depth. The proliferation of IoT devices which work on low-power also has drawn interests to the rebooting computing. Hence, the second contribution of this thesis is proving that Adiabatic Logic is a promising candidate for implementation in IoT devices. The adiabatic logic family called Symmetric Pass Gate Adiabatic Logic (SPGAL) is implemented in PRESENT-80 lightweight algorithm. Adiabatic Logic is extended to emerging transistor devices

    Techniques of Energy-Efficient VLSI Chip Design for High-Performance Computing

    Get PDF
    How to implement quality computing with the limited power budget is the key factor to move very large scale integration (VLSI) chip design forward. This work introduces various techniques of low power VLSI design used for state of art computing. From the viewpoint of power supply, conventional in-chip voltage regulators based on analog blocks bring the large overhead of both power and area to computational chips. Motivated by this, a digital based switchable pin method to dynamically regulate power at low circuit cost has been proposed to make computing to be executed with a stable voltage supply. For one of the widely used and time consuming arithmetic units, multiplier, its operation in logarithmic domain shows an advantageous performance compared to that in binary domain considering computation latency, power and area. However, the introduced conversion error reduces the reliability of the following computation (e.g. multiplication and division.). In this work, a fast calibration method suppressing the conversion error and its VLSI implementation are proposed. The proposed logarithmic converter can be supplied by dc power to achieve fast conversion and clocked power to reduce the power dissipated during conversion. Going out of traditional computation methods and widely used static logic, neuron-like cell is also studied in this work. Using multiple input floating gate (MIFG) metal-oxide semiconductor field-effect transistor (MOSFET) based logic, a 32-bit, 16-operation arithmetic logic unit (ALU) with zipped decoding and a feedback loop is designed. The proposed ALU can reduce the switching power and has a strong driven-in capability due to coupling capacitors compared to static logic based ALU. Besides, recent neural computations bring serious challenges to digital VLSI implementation due to overload matrix multiplications and non-linear functions. An analog VLSI design which is compatible to external digital environment is proposed for the network of long short-term memory (LSTM). The entire analog based network computes much faster and has higher energy efficiency than the digital one

    IDPAL – A Partially-Adiabatic Energy-Efficient Logic Family: Theory and Applications to Secure Computing

    Get PDF
    Low-power circuits and issues associated with them have gained a significant amount of attention in recent years due to the boom in portable electronic devices. Historically, low-power operation relied heavily on technology scaling and reduced operating voltage, however this trend has been slowing down recently due to the increased power density on chips. This dissertation introduces a new very-low power partially-adiabatic logic family called Input-Decoupled Partially-Adiabatic Logic (IDPAL) with applications in low-power circuits. Experimental results show that IDPAL reduces energy usage by 79% compared to equivalent CMOS implementations and by 25% when compared to the best adiabatic implementation. Experiments ranging from a simple buffer/inverter up to a 32-bit multiplier are explored and result in consistent energy savings, showing that IDPAL could be a viable candidate for a low-power circuit implementation. This work also shows an application of IDPAL to secure low-power circuits against power analysis attacks. It is often assumed that encryption algorithms are perfectly secure against attacks, however, most times attacks using side channels on the hardware implementation of an encryption operation are not investigated. Power analysis attacks are a subset of side channel attacks and can be implemented by measuring the power used by a circuit during an encryption operation in order to obtain secret information from the circuit under attack. Most of the previously proposed solutions for power analysis attacks use a large amount of power and are unsuitable for a low-power application. The almost-equal energy consumption for any given input in an IDPAL circuit suggests that this logic family is a good candidate for securing low-power circuits again power analysis attacks. Experimental results ranging from small circuits to large multipliers are performed and the power-analysis attack resistance of IDPAL is investigated. Results show that IDPAL circuits are not only low-power but also the most secure against power analysis attacks when compared to other adiabatic low-power circuits. Finally, a hybrid adiabatic-CMOS microprocessor design is presented. The proposed microprocessor uses IDPAL for the implementation of circuits with high switching activity (e.g. ALU) and CMOS logic for other circuits (e.g. memory, controller). An adiabatic-CMOS interface for transforming adiabatic signals to square-wave signals is presented and issues associated with a hybrid implementation and their solutions are also discussed

    Atomic Ramsey interferometry with S- and D-band in a triangular optical lattice

    Full text link
    Ramsey interferometers have wide applications in science and engineering. Compared with the traditional interferometer based on internal states, the interferometer with external quantum states has advantages in some applications for quantum simulation and precision measurement. Here, we develop a Ramsey interferometry with Bloch states in S- and D-band of a triangular optical lattice for the first time. The key to realizing this interferometer in two-dimensionally coupled lattice is that we use the shortcut method to construct π/2\pi/2 pulse. We observe clear Ramsey fringes and analyze the decoherence mechanism of fringes. Further, we design an echo π\pi pulse between S- and D-band, which significantly improves the coherence time. This Ramsey interferometer in the dimensionally coupled lattice has potential applications in the quantum simulations of topological physics, frustrated effects, and motional qubits manipulation

    EMERGING COMPUTING BASED NOVEL SOLUTIONS FOR DESIGN OF LOW POWER CIRCUITS

    Get PDF
    The growing applications for IoT devices have caused an increase in the study of low power consuming circuit design to meet the requirement of devices to operate for various months without external power supply. Scaling down the conventional CMOS causes various complications to design due to CMOS properties, therefore various non-conventional CMOS design techniques are being proposed that overcome the limitations. This thesis focuses on some of those emerging and novel low power design technique namely Adiabatic logic and low power devices like Magnetic Tunnel Junction (MTJ) and Carbon Nanotube Field Effect transistor (CNFET). Circuits that are used for large computations (multipliers, encryption engines) that amount to maximum part of power consumption in a whole chip are designed using these novel low power techniques

    Combining Approximate Computing And Adiabatic Logic For Low-Power And Energy-Efficient Iot Edge Computing

    Get PDF
    The growing data-intensive applications that run on IoT edge devices require the circuit to be low-power consumption and energy-efficient for limited resources. As conventional Complementary Metal-Oxide-Semiconductor (CMOS) scales down to the nanometer technology node, it reaches its limits, such as leakage and power consumption. Adiabatic logic and approximate computing are emerging techniques for the low-power circuit. Adiabatic logic can recycle energy which is a promising solution for building energy-efficient circuits. However, the power clock scheme and dual-rail structure of adiabatic logic increase the overall area. Power consumption is further reduced by applying approximate computing while reducing the complexity and size of the circuit. Therefore, to investigate the benefits of approximate computing combined with adiabatic logic, we propose two adiabatic logic based approximate adders. The proposed approximate adders use the advantage of dual-rail logic to shrink the overall size and reduce energy consumption. The two proposed designs are True Sum Approximate Adder (TSAA) and True Carry-out Approximate Adder (TCAA). TSAA approximates the Carryout based on the accurate Sum, and TCAA approximates the Sum based on the precise Carryout. We performed simulations using 45nm technology in Cadence Spectre. Comparing with CMOS based accurate mirror adder (AMA) at 100 MHz, a power-saving of 83.26% and energy saving of 66.54% in PFAL based TSAA (PFAL: Positive Feedback Adiabatic Logic) is achieved. Further, we achieved a power saving of 87.22% and an energy saving of 74.43% in PFAL based TCAA compared to CMOS based accurate mirror adder (AMA). It is illustrated that PFAL based TCAA consumes 24.0% less power and energy per cycle compared to PFAL based TSAA. Further, we have proposed the True Sum Approximate Adder (TSAA) and the True Carry-out Approximate Adder (TCAA) that are energy-efficient and secured against DPA attacks. At 12.5 MHz operating frequency and 45 nm technology node, the DPA-resistant adiabatic TSAA and TCAA achieved power savings of 95.4% and 95.48%, energy savings of 90.80%, and 90.96% in comparison with the standard CMOS AMA
    • …
    corecore