47 research outputs found

    High Linearity Millimeter Wave Power Amplifiers with Novel Linearizer Techniques

    No full text
    Millimeter-wave communications have experienced phenomenal growth in recent years when limited frequency spectrum is occupied by the ever-developing communication services. The power amplifier, as the key component in the transmitter/receiver module of communication systems, affects performance of the whole system directly and receives much attention. For minimized distortion and optimum system performance, the non-constant en- velope modulation schemes used in communication systems have challenging requirements on linearity. As linearity is related to communication quality directly, several linearization techniques, such as predistortion and feedforward, are applied to power amplifier design. Predistortion method has the advantages over other techniques in relatively simple struc- ture and reasonable linearity improvement. But current predistortion circuits have quite limited performance improvement and relatively large insertion loss, which indicate the need for further research. In most of millimeter-wave amplifier design, great effort has been spent on output power or gain, while linearity is often ignored. As almost all the predistortion circuits operate at the RF frequencies, the linearized millimeter-wave com- munication circuit is still relatively immature and very challenging. This project is dedicated to solve the linearity problem faced by millimeter-wave power amplifier in communication systems, which lacks of e®ective techniques in this field. Linearity improvement with the predistortion method will be the key issue in this project and some original ideas for predistortion circuit design will be applied to millimeter-wave amplifiers. In this thesis, several predistortion circuits with novel structure were proposed, which provide a new approach for linearity improvement for millimeter-wave power am- plifier. A millimeter-wave power ampli¯er for LMDS applications built on GaAs pHEMT technology was developed to a high engineering standard, which works as the test bench for linearization. Actual operation and parasitic elements at tens of gigahertz have been taken into consideration during the design. Firstly, two novel predistorter structures based on the amplifier were proposed, one is based on an amplifier with a fixed bias circuit and the other is based on an amplifier with a nonlinear signal dependant bias circuit. These novel structures can improve the linearity while improving other metrics simultaneously, which can effectively solve the problem of insertion loss faced by the conventional structures. Besides this, an original predistortion circuit design methodology derived from frequency to signal amplitude transformation was proposed. Based on this methodology, several transfer functions were proposed and related predistortion circuits were built to linearize the power amplifier. As this methodology is quite different from the traditional approach, it can improve the linearity signifficantly while other metrics are affected slightly and has a broad prospect for application

    High Linearity Millimeter Wave Power Amplifiers with Novel Linearizer Techniques

    Get PDF
    Millimeter-wave communications have experienced phenomenal growth in recent years when limited frequency spectrum is occupied by the ever-developing communication services. The power amplifier, as the key component in the transmitter/receiver module of communication systems, affects performance of the whole system directly and receives much attention. For minimized distortion and optimum system performance, the non-constant en- velope modulation schemes used in communication systems have challenging requirements on linearity. As linearity is related to communication quality directly, several linearization techniques, such as predistortion and feedforward, are applied to power amplifier design. Predistortion method has the advantages over other techniques in relatively simple struc- ture and reasonable linearity improvement. But current predistortion circuits have quite limited performance improvement and relatively large insertion loss, which indicate the need for further research. In most of millimeter-wave amplifier design, great effort has been spent on output power or gain, while linearity is often ignored. As almost all the predistortion circuits operate at the RF frequencies, the linearized millimeter-wave com- munication circuit is still relatively immature and very challenging. This project is dedicated to solve the linearity problem faced by millimeter-wave power amplifier in communication systems, which lacks of e®ective techniques in this field. Linearity improvement with the predistortion method will be the key issue in this project and some original ideas for predistortion circuit design will be applied to millimeter-wave amplifiers. In this thesis, several predistortion circuits with novel structure were proposed, which provide a new approach for linearity improvement for millimeter-wave power am- plifier. A millimeter-wave power ampli¯er for LMDS applications built on GaAs pHEMT technology was developed to a high engineering standard, which works as the test bench for linearization. Actual operation and parasitic elements at tens of gigahertz have been taken into consideration during the design. Firstly, two novel predistorter structures based on the amplifier were proposed, one is based on an amplifier with a fixed bias circuit and the other is based on an amplifier with a nonlinear signal dependant bias circuit. These novel structures can improve the linearity while improving other metrics simultaneously, which can effectively solve the problem of insertion loss faced by the conventional structures. Besides this, an original predistortion circuit design methodology derived from frequency to signal amplitude transformation was proposed. Based on this methodology, several transfer functions were proposed and related predistortion circuits were built to linearize the power amplifier. As this methodology is quite different from the traditional approach, it can improve the linearity signifficantly while other metrics are affected slightly and has a broad prospect for application

    An Octave-Range, Watt-Level, Fully-Integrated CMOS Switching Power Mixer Array for Linearization and Back-Off-Efficiency Improvement

    Get PDF
    The power mixer array is presented as a novel power generation approach for non-constant envelope signals. It comprises several power mixer units that are dynamically turned on and off to improve the linearity and back-off efficiency. At the circuit level, the power mixer unit can operate as a switching amplifier to achieve high peak power efficiency. Additional circuit level linearization and back-off efficiency improvement techniques are also proposed. To demonstrate the feasibility of this idea, a fully-integrated octave-range CMOS power mixer array is implemented in a 130 nm CMOS process. It is operational between 1.2 GHz and 2.4 GHz and can generate an output power of +31.3 dBm into an external 50 Ω load with a PAE of 42% and a gain compression of only 0.4 dB at 1.8 GHz. It achieves a PAE of 25%, at an average output power of +26.4 dBm, and an EVM of 4.6% with a non-constant-envelope 16 QAM signal. It can also produce arbitrary signal levels down to -70 dBm of output power with the 16 QAM-modulated signal without any RF gain control circuit

    펄스에 의한 동적 부하 변조 기술을 이용한 고효율 선형 송신기에 관한 연구

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2016. 8. 서광석.STRONG push for longer battery life time and growing thermal concerns for the modern 3G/4G mobile terminals lead to an ever-growing need for higher efficiencies from the handset power amplifiers (PAs). Furthermore, as the modulation signal bandwidth is increased and more complex modulation schemes are introduced for higher data rate, the peak-to-average power ratio (PAPR) of signals increases and the PA requires more power back-off to meet the stringent linearity requirement. Therefore, the PA design has to address the challenging task of enhancing the efficiencies in the back-off power levels. In this dissertation, dynamic load modulation (DLM) technique is investigated to boost the efficiency of a PA in the back-off output power level. This technique increases the efficiency by adjusting the PA load impedance according to the magnitude of the envelope signal. It can be categorized into two types, continuous and discrete types. Continuous-type DLM PA changes load impedance continuously by changing the capacitance of varactors used in the load matching circuit. Although the continuous modulation of the load impedance may result in significant efficiency enhancement, difficulties on integration of varactors and complexities on linearization of the PA make it difficult to be applied to the handset PA applications. Discrete-type DLM PA switches the load impedance from one value to another using RF switches. This type has the advantage in the aspect of ease of integration and simplicity in linearization compared to the continuous-type DLM PA, which make it more suited to the handset PA applications. However, the overall efficiency enhancement is quite limited since the PA does not always operate under the optimal load conditions. To overcome the limitation of the existing DLM techniques, a new method of DLM, called pulsed dynamic load modulation (PDLM), is proposed to operate the PA near the optimum impedance across a continuous back-off power range while still benefiting from the advantages offered by the discrete-type DLM PA. PDLM PA combines the concept of Class-S PA with 1-bit discrete load switching. Analytical calculation using simplified equivalent model is well matched with simulation results. To prove the proposed concept, it is implemented by designing and fabricating a prototype PDLM PA at 837 MHz using a 0.32-μm silicon-on-insulator (SOI) CMOS process. The experimental results show the overall PAE improvement for high-PAPR signals such as LTE signals. Several issues caused by the PDLM technique are also discussed such as imperfect pulse tone termination effect and output noise spectrum due to pulse tones. Improving methods are proposed through the further analysis and evaluation. The proposed PA is compared to the envelope tracking (ET) PA which is commonly used to boost efficiency at the back-off output power. Since the proposed concept is realized with low-power control circuits unlike envelope tracking, which requires high-power circuits such as dc-dc converters and linear amplifiers, the PDLM PA concept of this work can provide a potential solution for high-efficiency PAs for the future mobile terminals using wideband modulation signals.Chapter 1. Introduction 1 Chapter 2. Dynamic Load Modulation Technique 8 2.1 Introduction 8 2.2 Continuous-type dynamic load modulation PA 9 2.3 Discrete-type dynamic load modulation PA 14 2.4 Implementation example 15 2.4.1 DLM PA Structure 16 2.4.2 Linearization 23 2.4.3 Experimental Results 25 2.4.4 Conclusion 31 2.5 Limitations 32 2.6 References 33 Chapter 3. A Pulsed Dynamic Load Modulation Technique for High-Efficiency Linear Transmitters 36 3.1 Introduction 36 3.2 Operation Principle of the PDLM PA 38 3.2.1 Concept of the PDLM PA 38 3.2.2 Theoretical Analysis of the PDLM PA 41 3.3 Circuit Design 47 3.3.1 2 stage CMOS PA design 49 3.3.2 High power RF switch design 59 3.3.3 PWM signal generator and switch driver 61 3.4 Experimental Results 63 3.5 Conclusion 76 3.6 References 77 Chapter 4. Discussions 83 4.1 Operation bandwidth of the PDLM PA 83 4.2 Spectral noise reduction method 87 4.3 References 91 Chapter 5. Conclusions 94 5.1 Research Summary 94 5.2 Future Works 95 Abstract in Korean 97 Publications 99Docto

    이동통신 기기에 적합한 재구성이 가능한 다중대역 선형 CMOS 전력증폭기에 관한 연구

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2015. 2. 권영우.In this Dissertation, a study on multiband reconfigurable linear CMOS power amplifier (PA) is performed. Since a larger number of frequency bands is allocated for 3G/4G mobile communication standards nowadays, handset PAs are required to support the ever-increasing number of frequency bands. With the advent of high-speed wireless data transmission, handset PAs are also demanded to perform linear power amplification under the wide-band signal condition. Even though the CMOS technology has cost and size benefits, however, designing a watt-level linear CMOS PA is a challenging issue due to low breakdown voltage and nonlinear nature of the CMOS device. To resolve the issues above, this study presents two methods suitable for multiband (MB) linear CMOS PA: a reconfigurable MB matching structure and a linearization technique. The proposed MB structure shares a PA core to reduce the cost and size, and contains the power- and frequency-reconfigurable matching networks as well as the output path-selection function. Thus, it can perform the MB operation requiring multiple frequency bands and target output powers. The reconfiguration mechanism is quantitatively analyzed and experimentally demonstrated. The fabricated tri-band reconfigurable 3G UMTS PA using an InGaP/GaAs heterojunction bipolar transistor (HBT) process for practical handset application showed minimal efficiency degradation of less than 2% by multi-banding, compared with a single-band reference PA. For linearization of a CMOS PA, a phase-based linearization technique is presented. Since the PA nonlinearity is determined by the dynamic AM-AM and AM-PM, the two distortions should simultaneously be considered in linearization. Contrary to the previous works which have focused on the correction of AM-AM distortion by providing an envelope-dependent gate-bias, this work proposes an AM-PM linearizer using a varactor and an envelope-reshaping circuit. This linearizer helps the PA recover AM-AM distortion as well. To validate the usefulness of the proposed linearizer, 1.88 GHz and 0.9 GHz stacked-FET PAs using a 0.32-μm silicon-on-insulator (SOI) CMOS process were designed and fabricated. Measurement results showed that the fabricated 1.88 / 0.9 GHz linear CMOS PAs achieved linear efficiencies (meeting –39 dBc W-CDMA ACLR) of higher than 44 / 49%. Furthermore, a single-chain MB linear CMOS PA was implemented based on the proposed MB reconfiguration and linearization techniques. The fabricated MB PA, which has two outputs and covers five popular uplink UMTS/LTE bands (Band 1/2/4/5/8: 824 ~ 1980 MHz), showed minimal efficiency degradation (< 3.3%) compared to the single-band dedicated CMOS PA with W-CDMA efficiencies in excess of 40.7%. Finally, the signal-bandwidth limiting effect of the envelope-based linear CMOS PA is discussed and a solution is proposed. Due to the time delay during envelope-detection and shaping, a timing mismatch between the incoming RF signal and envelope-reshaped signal occurs, thus resulting in no linearization effect under wide-band signal (LTE 20 MHz or more) conditions. To resolve the problem, a group delay circuit with a compact size is employed and thus the linearization effect of the proposed phase-based linearizer is maintained up to 40 MHz LTE bandwidth.Abstract i Contents iii List of Tables vi List of Figures vii 1. Introduction 1 1.1 Motivation 1 1.2 Multiband PA Structure 4 1.3 Linearization of CMOS PA 6 1.4 Dissertation Organization 7 1.5 References 9 2. A Multiband Reconfigurable Power Amplifier for 3G UMTS Handset Applications 10 2.1 Introduction 10 2.2 Operation Principle of the Reconfigurable Output Matching Network 12 2.2.1 Power Reconfigurable Network (PRN) 14 2.2.2 Frequency Reconfigurable Network (FRN) 17 2.2.3 Path Selection Network (PSN) 20 2.2.4 Experimental Validation of the PRN and FRN 24 2.3 Fabrication and Measurement of a MB UMTS Reconfigurable PA 26 2.3.1 Design 26 2.3.2 Measurement 31 2.4 Summary 37 2.5 References 38 3. Linearization of CMOS Power Amplifier and Its Multiband Application 41 3.1 Introduction 41 3.2 Linearization of CMOS PAs: Prior Arts 43 3.3 Harmonic Termination 46 3.3.1 Operation Analysis 47 3.3.2 Experimental Validation 52 3.4 Control of Gate Bias Modulation Effect 54 3.4.1 Analysis 54 3.4.2 Experimental Validation 60 3.5 Proposed Linearization #1: Hybrid Bias 67 3.6 Proposed Linearization #2: Phase Injection 71 3.6.1 Motivation 71 3.6.2 Phase (Capacitance) Injection 72 3.7 Linear CMOS PA Design 75 3.7.1 Baseline PA Design 76 3.7.2 Linearizer Design 78 3.7.3 Fabrication 82 3.8 Measurement Results 83 3.8.1 CW Measurement 83 3.8.2 W-CDMA Measurement 84 3.8.3 LTE Measurement 87 3.9 A Single-Chain MB Reconfigurable Linear PA in SOI CMOS 90 3.9.1 MB Linear CMOS PA: Design 90 3.9.2 MB Linear CMOS PA: Measurement 94 3.10 Summary 99 3.11 References 100 4. Linearization of CMOS Power Amplifier Convering Wideband Signal 105 4.1 Introduction 105 4.2 Bandwidth Limitation of Envelope-Based Linearizers 106 4.2.1 Analysis 106 4.2.2 Delay Correction 110 4.2.3 Feedforward Envelope-Detection Structure with a Delay T/L 114 4.3 Group Delay Circuit 117 4.3.1 Positive GDC versus Negative GDC 117 4.3.2 Left-Handed T/L-Based GDC 119 4.4 Fabrication and Measurement 122 4.4.1 GDC Measurement 123 4.4.2 LTE Measurement 124 4.5 Summary 127 4.6 References 128 5. Conclusions 130 5.1 Research Summary 130 5.2 Future Works 132 Abstract in Korean 133 Publications 135Docto

    DESIGN OF A GAAS DISTRIBUTED AMPLIFIER WITH LC TRAPS BASED BROADBAND LINEARIZATION

    Get PDF
    Increasing the linearity of power amplifiers has been an important area of research because its signal integrity influences the performance of the entire transreceiver system and there are strict regulatory requirements on them. Due to the nonlinear behaviour of power amplifiers, third order intermodulation products are generated close to the desired signals and cannot be removed by filters. Increasing linearity will help bring these distortion products closer to the noise floor. However, it is not an easy task to increase linearity without trading off output power. To maintain the same level of output power generated but with higher linearity, many techniques, each with its own pros and cons, have been implemented to linearize an amplifier. Techniques involving feedback are seriously limited in terms of modulation bandwidth whereas methods such as predistortion and feedforward are very difficult to implement. This project seeks to use a simple method of placing terminations directly to the distributed amplifier (DA), making it a device level linearization technique and can be used in addition to the other system level techniques mentioned earlier. To increase linearity over a broad bandwidth of 0.5 to 3.0 GHz, this work proposes using low impedance terminations (LC traps) at the envelope frequency to the input and output of several distributed amplifiers. This research is novel since this is the first time broadband improvement in linearity has been demonstrated using the LC trap method. Two design iterations were completed (first design iteration has four variants to test the output trap while the second design iteration has three variants to test the input trap). The low impedance terminations are implemented using inductor-capacitor networks that are external to the monolithic microwave integrated circuit (MMIC). Design and layout of the DAs were carried out using Agilent’s Advanced Design System (ADS). Results show that placing the traps at the output of the DA does not truly affect the linearity of the device at lower frequencies but provide an improvement of 1.6 dB and 3.4 dB to the third-order output intercept point (OIP3) at 2.5 GHz and 3.0 GHz, respectively. With traps at the input, measurement results at -5 dBm input power, viii 1.375 V base bias (61 mA total collector current) and 10 MHz two tone spacing show a broadband improvement throughout the band (0.5 GHz to 3.0 GHz) of 3.3 dB to 7.4 dB in OIP3. Furthermore, the OIP3 is increased to 19.2 dB above P1dB. Results show that the improvement in OIP3 comes without lowering gain, return loss or P1dB and without causing any stability problems

    Intermodulation distortion performance enhancement of microwave power amplifiers

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.This thesis reports the author's investigation of the effects of the injection of specific signals on the intermodulation distortion performance of microwave power amplifiers. Theory, simulation and practical results are presented, analysed and compared. The thesis gives the reader background knowledge of power amplifiers and their nonlinearities and go on to analyse the phenomena of intermodulation distortion product generation in power amplifiers. The analysis is based on a three-tone test since this highlights a second kind of third order intermodulation distortion (IMD3), which are in general higher in amplitude than the first kind of IMD3 found in a two-tone test. A mathematical analysis and a simulation of a MESFET amplifier are performed. It enables the comparison of the performance of IMD cancellation by injection of signals whose frequencies are chosen to be first, the second harmonic of the fundamental signals, second, the sum of the fundamental signal frequencies and finally the difference frequencies of the fundamental signals. A practical implementation of the difference frequency technique is then presented and practical results are compared to the other two techniques of second harmonic injection and the injection of the sum of fundamental frequencies. It is further shown that in practise these two techniques may be considered as a single technique

    Vidutinių dažnių 5G belaidžių tinklų galios stiprintuvų tyrimas

    Get PDF
    This dissertation addresses the problems of ensuring efficient radio fre-quency transmission for 5G wireless networks. Taking into account, that the next generation 5G wireless network structure will be heterogeneous, the device density and their mobility will increase and massive MIMO connectivity capability will be widespread, the main investigated problem is formulated – increasing the efficiency of portable mid-band 5G wireless network CMOS power amplifier with impedance matching networks. The dissertation consists of four parts including the introduction, 3 chapters, conclusions, references and 3 annexes. The investigated problem, importance and purpose of the thesis, the ob-ject of the research methodology, as well as the scientific novelty are de-fined in the introduction. Practical significance of the obtained results, defended state-ments and the structure of the dissertation are also included. The first chapter presents an extensive literature analysis. Latest ad-vances in the structure of the modern wireless network and the importance of the power amplifier in the radio frequency transmission chain are de-scribed in detail. The latter is followed by different power amplifier archi-tectures, parameters and their improvement techniques. Reported imped-ance matching network design methods are also discussed. Chapter 1 is concluded distinguishing the possible research vectors and defining the problems raised in this dissertation. The second chapter is focused around improving the accuracy of de-signing lumped impedance matching network. The proposed methodology of estimating lumped inductor and capacitor parasitic parameters is dis-cussed in detail provi-ding complete mathematical expressions, including a summary and conclusions. The third chapter presents simulation results for the designed radio fre-quency power amplifiers. Two variations of Doherty power amplifier archi-tectures are presented in the second part, covering the full step-by-step de-sign and simulation process. The latter chapter is concluded by comparing simulation and measurement results for all designed radio frequency power amplifiers. General conclusions are followed by an extensive list of references and a list of 5 publications by the author on the topic of the dissertation. 5 papers, focusing on the subject of the discussed dissertation, have been published: three papers are included in the Clarivate Analytics Web of Sci-ence database with a citation index, one paper is included in Clarivate Ana-lytics Web of Science database Conference Proceedings, and one paper has been published in unreferred international conference preceedings. The au-thor has also made 9 presentations at 9 scientific conferences at a national and international level.Dissertatio

    An Octave-Range Watt-Level Fully Integrated CMOS Switching Power Mixer Array for Linearization and Back-Off Efficiency Improvement

    Full text link

    Ultra-Compact mm-Wave Monolithic IC Doherty Power Amplifier for Mobile Handsets

    Get PDF
    YesThis work develops a novel dynamic load modulation Power Amplifier (PA) circuity that can provide an optimum compromise between linearity and efficiency while covering multiple cellular frequency bands. Exploiting monolithic microwave integrated circuits (MMIC) technology, a fully integrated 1W Doherty PA architecture is proposed based on 0.1 µm AlGaAs/InGaAs Depletion- Mode (D-Mode) technology provided by the WIN Semiconductors foundry. The proposed wideband DPA incorporates the harmonic tuning Class-J mode of operation, which aims to engineer the voltage waveform via second harmonic capacitive load termination. Moreover, the applied post-matching technique not only reduces the impedance transformation ratio of the conventional DPA, but also restores its proper load modulation. The simulation results indicate that the monolithic drive load modulation PA at 4 V operation voltage delivers 44% PAE at the maximum output power of 30 dBm at the 1 dB compression point, and 34% power-added efficiency (PAE) at 6 dB power back-off (PBO). A power gain flatness of around 14 ± 0.5 dB was achieved over the frequency band of 23 GHz to 27 GHz. The compact MMIC load modulation technique developed for the 5G mobile handset occupies the die area of 3.2.This research was funded by the European Regional Development Fund (FEDER), through COMPETE 2020, POR ALGARVE 2020, Fundação para a Ciência e a Tecnologia (FCT) under i-Five Project (POCI-01-0145-FEDER-030500). This work is also part of the POSITION-II project funded by the ECSEL joint Undertaking under grant number Ecsel-345 7831132-Postitio-II-2017-IA. This work is supported by FCT/MCTES through national funds and when applicable co-funded EU funds under the project UIDB/50008/2020-UIDP/50008/2020. The authors would like to thank the WIN Semiconductors foundry for providing the MMIC GaAs pHEMT PDKs and technical support. This work is supported by the Project TEC2017-88242-C3-2-R- Spanish Ministerio de Ciencia, Innovación e Universidades and EU-FEDER funding
    corecore