8,685 research outputs found

    A comparative evaluation for liver segmentation from spir images and a novel level set method using signed pressure force function

    Get PDF
    Thesis (Doctoral)--Izmir Institute of Technology, Electronics and Communication Engineering, Izmir, 2013Includes bibliographical references (leaves: 118-135)Text in English; Abstract: Turkish and Englishxv, 145 leavesDeveloping a robust method for liver segmentation from magnetic resonance images is a challenging task due to similar intensity values between adjacent organs, geometrically complex liver structure and injection of contrast media, which causes all tissues to have different gray level values. Several artifacts of pulsation and motion, and partial volume effects also increase difficulties for automatic liver segmentation from magnetic resonance images. In this thesis, we present an overview about liver segmentation methods in magnetic resonance images and show comparative results of seven different liver segmentation approaches chosen from deterministic (K-means based), probabilistic (Gaussian model based), supervised neural network (multilayer perceptron based) and deformable model based (level set) segmentation methods. The results of qualitative and quantitative analysis using sensitivity, specificity and accuracy metrics show that the multilayer perceptron based approach and a level set based approach which uses a distance regularization term and signed pressure force function are reasonable methods for liver segmentation from spectral pre-saturation inversion recovery images. However, the multilayer perceptron based segmentation method requires a higher computational cost. The distance regularization term based automatic level set method is very sensitive to chosen variance of Gaussian function. Our proposed level set based method that uses a novel signed pressure force function, which can control the direction and velocity of the evolving active contour, is faster and solves several problems of other applied methods such as sensitivity to initial contour or variance parameter of the Gaussian kernel in edge stopping functions without using any regularization term

    Statistical Shape Modelling and Segmentation of the Respiratory Airway

    Get PDF
    The human respiratory airway consists of the upper (nasal cavity, pharynx) and the lower (trachea, bronchi) respiratory tracts. Accurate segmentation of these two airway tracts can lead to better diagnosis and interpretation of airway-specific diseases, and lead to improvement in the localization of abnormal metabolic or pathological sites found within and/or surrounding the respiratory regions. Due to the complexity and the variability displayed in the anatomical structure of the upper respiratory airway along with the challenges in distinguishing the nasal cavity from non-respiratory regions such as the paranasal sinuses, it is difficult for existing algorithms to accurately segment the upper airway without manual intervention. This thesis presents an implicit non-parametric framework for constructing a statistical shape model (SSM) of the upper and lower respiratory tract, capable of distinct shape generation and be adapted for segmentation. An SSM of the nasal cavity was successfully constructed using 50 nasal CT scans. The performance of the SSM was evaluated for compactness, specificity and generality. An averaged distance error of 1.47 mm was measured for the generality assessment. The constructed SSM was further adapted with a modified locally constrained random walk algorithm to segment the nasal cavity. The proposed algorithm was evaluated on 30 CT images and outperformed comparative state-of-the-art and conventional algorithms. For the lower airway, a separate algorithm was proposed to automatically segment the trachea and bronchi, and was designed to tolerate the image characteristics inherent in low-contrast CT images. The algorithm was evaluated on 20 clinical low-contrast CT from PET-CT patient studies and demonstrated better performance (87.1±2.8 DSC and distance error of 0.37±0.08 mm) in segmentation results against comparative state-of-the-art algorithms

    Détection du Contour Actif de Différentes Images

    Get PDF
    La segmentation d'image est le problème de partitionnement d'une image en différentes sous-régions sur la base d'une caractéristique préférée. La segmentation est un domaine de recherche important dans le traitement d'images et joue un rôle important dans la vision par ordinateur et la détection d'objets. Un grand nombre d'approches différentes ont été développées pour traiter le problème de segmentation, y compris les modèles de contour actif (MCA). L'idée fondamentale est d'élaborer une courbe initiale sous certaines contraintes d'une image donnée pour détecter les limites d'objet en minimisant une énergie. Dans ce cadre, cette thèse vise à développer des modèles traitant de problèmes de détection d'objets (segmentation d'images) caractérisés par inhomogénéité d'intensité et des limites bruyantes et mal définies. Pour faire face à ces défis, nous avons proposé un certain nombre de MCAs s'appuyant sur la méthode d’ensemble de niveaux. Le premier combine les informations de contour et de région sur la base d'une fonction de pondération adaptative. La deuxième approche utilise la force de pression signée locale basée-région dans une formulation d’ensemble de niveaux simple et efficace. Enfin, le troisième implémente une segmentation basée contour avec une nouvelle fonction d'arrêt basée sur le motif binaire local (LBP). Les résultats expérimentaux démontrent la grande précision de la segmentation obtenue sur diverses images en niveaux de gris synthétiques et réelles par rapport à l’état de l’art des MCA

    Hybrid SPF and KD Operator-Based Active Contour Model for Image Segmentation

    Get PDF
    Image segmentation is a crucial stage of image analysis systems because it detects and extracts regions of interest for further processing, such as image recognition and the image description. However, segmenting images is not always easy because segmentation accuracy depends significantly on image characteristics, such as color, texture, and intensity. Image inhomogeneity profoundly degrades the segmentation performance of segmentation models. This article contributes to image segmentation literature by presenting a hybrid Active Contour Model (ACM) based on a Signed Pressure Force (SPF) function parameterized with a Kernel Difference (KD) operator. An SPF function includes information from both the local and global regions, making the proposed model independent of the initial contour position. The proposed model uses an optimal KD operator parameterized with weight coefficients to capture weak and blurred boundaries of inhomogeneous objects in images. Combined global and local image statistics were computed and added to the proposed energy function to increase the proposed model's sensitivity. The segmentation time complexity of the proposed model was calculated and compared with previous state-of-the-art active contour methods. The results demonstrated the significant superiority of the proposed model over other methods. Furthermore, a quantitative analysis was performed using the mini-MIAS database. Despite the presence of complex inhomogeneity, the proposed model demonstrated the highest segmentation accuracy when compared to other methods

    Computerized Analysis of Magnetic Resonance Images to Study Cerebral Anatomy in Developing Neonates

    Get PDF
    The study of cerebral anatomy in developing neonates is of great importance for the understanding of brain development during the early period of life. This dissertation therefore focuses on three challenges in the modelling of cerebral anatomy in neonates during brain development. The methods that have been developed all use Magnetic Resonance Images (MRI) as source data. To facilitate study of vascular development in the neonatal period, a set of image analysis algorithms are developed to automatically extract and model cerebral vessel trees. The whole process consists of cerebral vessel tracking from automatically placed seed points, vessel tree generation, and vasculature registration and matching. These algorithms have been tested on clinical Time-of- Flight (TOF) MR angiographic datasets. To facilitate study of the neonatal cortex a complete cerebral cortex segmentation and reconstruction pipeline has been developed. Segmentation of the neonatal cortex is not effectively done by existing algorithms designed for the adult brain because the contrast between grey and white matter is reversed. This causes pixels containing tissue mixtures to be incorrectly labelled by conventional methods. The neonatal cortical segmentation method that has been developed is based on a novel expectation-maximization (EM) method with explicit correction for mislabelled partial volume voxels. Based on the resulting cortical segmentation, an implicit surface evolution technique is adopted for the reconstruction of the cortex in neonates. The performance of the method is investigated by performing a detailed landmark study. To facilitate study of cortical development, a cortical surface registration algorithm for aligning the cortical surface is developed. The method first inflates extracted cortical surfaces and then performs a non-rigid surface registration using free-form deformations (FFDs) to remove residual alignment. Validation experiments using data labelled by an expert observer demonstrate that the method can capture local changes and follow the growth of specific sulcus

    Variational methods for shape and image registrations.

    Get PDF
    Estimating and analysis of deformation, either rigid or non-rigid, is an active area of research in various medical imaging and computer vision applications. Its importance stems from the inherent inter- and intra-variability in biological and biomedical object shapes and from the dynamic nature of the scenes usually dealt with in computer vision research. For instance, quantifying the growth of a tumor, recognizing a person\u27s face, tracking a facial expression, or retrieving an object inside a data base require the estimation of some sort of motion or deformation undergone by the object of interest. To solve these problems, and other similar problems, registration comes into play. This is the process of bringing into correspondences two or more data sets. Depending on the application at hand, these data sets can be for instance gray scale/color images or objects\u27 outlines. In the latter case, one talks about shape registration while in the former case, one talks about image/volume registration. In some situations, the combinations of different types of data can be used complementarily to establish point correspondences. One of most important image analysis tools that greatly benefits from the process of registration, and which will be addressed in this dissertation, is the image segmentation. This process consists of localizing objects in images. Several challenges are encountered in image segmentation, including noise, gray scale inhomogeneities, and occlusions. To cope with such issues, the shape information is often incorporated as a statistical model into the segmentation process. Building such statistical models requires a good and accurate shape alignment approach. In addition, segmenting anatomical structures can be accurately solved through the registration of the input data set with a predefined anatomical atlas. Variational approaches for shape/image registration and segmentation have received huge interest in the past few years. Unlike traditional discrete approaches, the variational methods are based on continuous modelling of the input data through the use of Partial Differential Equations (PDE). This brings into benefit the extensive literature on theory and numerical methods proposed to solve PDEs. This dissertation addresses the registration problem from a variational point of view, with more focus on shape registration. First, a novel variational framework for global-to-local shape registration is proposed. The input shapes are implicitly represented through their signed distance maps. A new Sumof- Squared-Differences (SSD) criterion which measures the disparity between the implicit representations of the input shapes, is introduced to recover the global alignment parameters. This new criteria has the advantages over some existing ones in accurately handling scale variations. In addition, the proposed alignment model is less expensive computationally. Complementary to the global registration field, the local deformation field is explicitly established between the two globally aligned shapes, by minimizing a new energy functional. This functional incrementally and simultaneously updates the displacement field while keeping the corresponding implicit representation of the globally warped source shape as close to a signed distance function as possible. This is done under some regularization constraints that enforce the smoothness of the recovered deformations. The overall process leads to a set of coupled set of equations that are simultaneously solved through a gradient descent scheme. Several applications, where the developed tools play a major role, are addressed throughout this dissertation. For instance, some insight is given as to how one can solve the challenging problem of three dimensional face recognition in the presence of facial expressions. Statistical modelling of shapes will be presented as a way of benefiting from the proposed shape registration framework. Second, this dissertation will visit th
    • …
    corecore